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Abstract

Bayesian methods promise to provide a principled way to quantify uncertainty in neural networks. This is

important for many applications in machine learning, such as those involving safety-critical decisions that rely

on risk assessment and interpretability. However, Bayesian inference is often computationally intractable, so

approximate methods which compromise performance for practicality are used. The Laplace approximation

(LA) is one such method, though it itself typically relies on crude approximations to the posterior precision

matrix to make it computationally feasible. When we do not factorise the posterior precision into more

practical approximations, existing methods require that the full posterior precision be instantiated. We call

this the full Laplace approximation. For all but toy problems, however, since the full precision matrix scales

quadratically with the number of parameters, this matrix is too large to be stored in memory.

In this work, we propose a method for computing the Laplace approximation using only Jacobian-vector

products. This allows us to perform marginal training and posterior sampling using the full Laplace

approximation without storing the entire posterior precision matrix. To accomplish this, we show that we can

estimate the posterior precision’s log-determinant and inverse square root using only Jacobian-vector products.

To overcome the conditioning issues that arise during sampling, we offer several potential preconditioners

which can be used to improve convergence of the inverse square root approximation. Next, we give a technique

for evaluating the quality of the posterior samples without instantiating nor inverting the posterior precision

based on results from traditional statistics. To implement these methods, we use JAX, a library for automatic

differentiation which enables us to efficiently perform Jacobian-vector products without explicitly storing the

entire posterior precision.

We perform the full Laplace approximation on both a sine function and MNIST using our method. This

consists of two steps: (a) training a neural network by maximising either its posterior probability or marginal

likelihood and (b) sampling from this posterior. Our approximate maximum marginal training procedure is

able to learn a set of parameters which yields performance comparable to that of the maximum posterior and

maximum likelihood training procedures. By analysing quantile–quantile plots of our posterior samples

and visualising these samples, we find that our approximate sampling method produces samples which

are correctly distributed. Our benchmarks of the performance of Jacobian-vector products estimate that our

method yields a 10 000x memory reduction over the conventional full Laplace approximation, since it does

not store the quadratically-scaling full posterior precision matrix. This is the first method for performing the

Laplace approximation while only accessing the posterior precision implicitly.





Resumé

Bayesianske metoder lover at give en principiel måde at kvantificere usikkerheden i neurale netværk på.

Dette er vigtigt for mange anvendelser inden for machine learning, f.eks. i forbindelse med sikkerhedskritiske

beslutninger, der er afhængige af risikovurdering og fortolkningsmuligheder. Bayesiansk inferens er imidlertid

ofte beregningsmæssigt uhåndterbar, så der anvendes tilnærmede metoder, som går på kompromis med

ydeevnen for at opnå praktisk anvendelighed. Laplace-approksimationen (LA) er en sådan metode, selv

om den typisk er afhængig af grove tilnærmelser af den efterfølgende præcisionsmatrix for at gøre den

beregningsmæssigt gennemførlig. Når vi ikke faktoriserer den efterfølgende præcision i mere praktiske

tilnærmelser, kræver de eksisterende metoder, at den fulde efterfølgende præcision skal instantieres. Vi

kalder dette den fulde Laplace-approksimation. Da den fulde præcisionsmatrix imidlertid for alle problemer

undtagen legetøjsproblemer skalerer kvadratisk med antallet af parametre, er denne matrix for stor til at

blive lagret i hukommelsen.

I dette studie foreslår vi en metode til beregning af Laplace-approksimationen ved hjælp af Jacobian-

vektorprodukter alene. Dette giver os mulighed for at udføre marginal træning og efterfølgende stikprøveud-

tagning ved hjælp af den fulde Laplace-approksimation uden at lagre hele den efterfølgende præcisionsmatrix.

For at opnå dette viser vi, at vi kan estimere den posteriore præcisionens log-determinant og den inverse

kvadratrod ved hjælp af kun jacobianiske vektorprodukter. For at overvinde de konditioneringsproblemer,

der opstår under sampling, tilbyder vi flere potentielle prækonditioneringsværktøjer, som kan anvendes til at

forbedre konvergensen af den inverse kvadratrodsapproksimation. Dernæst giver vi en teknik til at evaluere

kvaliteten af de efterfølgende stikprøver uden at instantiere eller invertere den efterfølgende præcision

baseret på resultater fra traditionel statistik. Til at gennemføre disse metoder anvender vi JAX, et bibliotek til

automatisk differentiering, som gør det muligt at udføre jacobian-vektorprodukter effektivt uden eksplicit

lagring af hele den efterfølgende præcision.

Vi udfører den fulde Laplace-approksimation på både en sinusfunktion og MNIST ved hjælp af vores

metode. Denne består af to trin: (a) træning af et neuralt netværk ved at maksimere enten dets posterior

sandsynlighed eller marginale sandsynlighed og (b) prøveudtagning fra denne posterior. Vores tilnærmede

maksimale marginale træningsprocedure er i stand til at lære et sæt parametre, som giver en ydeevne, der

er sammenlignelig med den maksimale posterior- og maksimale sandsynlighedstræningsprocedure. Ved

at analysere quantile–quantile-plots af vores posteriorprøver og visualisere disse prøver finder vi, at vores

tilnærmede prøveudtagningsmetode giver prøver, der er korrekt fordelt. Vores benchmarks af Jacobian-

vektorprodukternes ydeevne anslår, at vores metode giver en 10 000x hukommelsesreduktion i forhold til den

konventionelle fulde Laplace-approksimation, da den ikke lagrer den kvadratisk skalerende matrix med fuld

præcision for den efterfølgende periode. Dette er den første metode til at udføre Laplace-approksimationen,

hvor der kun er implicit adgang til den efterfølgende præcision.
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1.1 Bayesian Deep Learning

Bayesian methods allow for estimates of uncertainty which enable more

efficient usage of data (e.g., via active learning) and avoid overfitting.

They accomplish this by using Bayes’ theorem to model a distribution

on the model parameters, which is then used to make predictions. From

here we can sample from this distribution to make predictions, thereby

yielding uncertainty estimates, thus enabling the assessment of model

predictive confidence. In doing so, they allow for uncertainty estimates,

which is important for many applications in machine learning, such as

those involving safety-critical decisions which rely on understanding

risk, where traditional deterministic neural networks are overconfident

or fail to provide uncertainty estimates at all. The estimation of model

confidence is particularly important in domains where silent failures

can have catastrophic consequences [1], such as autonomous driving [2],

medical diagnosis [3], and financial markets [4]. These methods have

been successfully applied to a wide range of classical problems in statis-

tics, though attempts to apply them to deep learning have had limited

success. For deep learning, the Bayesian approach is often limited by

the computational cost of Bayesian inference. This is because Bayesian

inference requires computing the posterior distribution of the model

parameters given the data, which, due to the nonlinear complexity of the

neural network architecture, is often intractable.

Typically, the Bayesian approach to deep learning is to use a prior

distribution over the model parameters and then compute the posterior

distribution of the model parameters given the data, where the posterior

is maximised to obtain the optimal model parameters for the available

data. This posterior distribution can then be sampled from to make

predictions. The optimisation can, depending on the choices of likelihood

and prior, often be done analytically or numerically. However, computing

and sampling from the posterior is often difficult, and so approximate

Bayesian methods are used instead. These approaches depend greatly

on the choice of prior, which is non-trivial. Often, a prior is chosen

which is simple and has a convenient analytical form, such as a Gaussian

prior. However, even in this case, the choice of prior precision is still

difficult, often being estimated by cross-validation. Instead, maximising

the marginal likelihood allows for optimisation of hyperparameters

in the likelihood and prior, which can be done using gradient-based

optimisation algorithms. However, this is computationally infeasible,

and so approximate Bayesian methods are used instead.

1.2 Current Methods

Currently, approximate Bayesian methods are either expensive to com-

pute (Markov chain Monte Carlo) or are limited in their Bayesian inter-



2 1 Introduction

pretation (e.g., Monte Carlo dropout [5], deep ensembles [6], SWAG [7]).

Of these, MC dropout and Markov chain Monte Carlo are the most

widely used, though both have significant drawbacks. As such, there

is demand for a method which exhibits the same computational cost

as the optimization algorithms for deterministic neural networks while

providing accurate posterior approximations and working out-of-the-box

for any given architecture.

The Laplace approximation [8, 9] is a simple yet theoretically well-

supported posterior approximation suitable for Bayesian modeling. The

Laplace approximation has been applied in, for example, the prediction

of earthquake hypocenters [10]. The primary advantages of the Laplace

approximation are that it is simple to implement, effective at out-of-

distribution detection [11] and can be performed post-hoc on a pre-trained

model. This last point is important, since it also means that the Laplace

approximation can be as cheap to train as the optimization algorithms for

deterministic neural networks, while only requiring a small amount of

additional computation to compute the posterior samples for inference.

The Laplace approximation corresponds to performing a second-order

Taylor expansion of the log-posterior around the maximum a posteriori
(MAP) estimate of the model parameters as

log 𝑝(𝜽 | 𝒚) ≈ log 𝑝(𝜽map | 𝒚) +
1

2

(𝜽 − 𝜽map)T∇2

𝜽 log 𝑝(𝜽 | 𝒚)(𝜽 − 𝜽map).

This is equivalent to approximating the posterior as a Gaussian distri-

bution with mean and precision given by the MAP estimate and the

Hessian matrix of the log-posterior respectively, i.e.,

𝑝(𝜽 | 𝒚) ≈ 𝒩
(
𝜽

���𝜽map ,
(
−∇2

𝜽 log 𝑝(𝜽 | 𝒚)
)−1

)
.

To compute the posterior distribution of the model parameters, we thus

need to compute the Hessian of the negative log-posterior loss with

respect to the model parameters. Typically, this is done by storing the

posterior precision matrix explicitly and computing the inverse of this

matrix. Since the full Hessian matrix is a 𝐷 × 𝐷 square matrix with

𝐷2
elements, where 𝐷 is the number of parameters, this is intractable

for large models, which can contain millions or billions of parameters,

thus limiting the applicability of full Laplace outside of toy problems

of a few thousand parameters. To overcome this, we can use a crude

approximation, such as only storing the posterior precision matrix’s

diagonal [12, 13], its Kronecker factorisation [14–16], and other low-rank

approximations. Many of these approximations to the posterior precision

have successfully been applied to the Laplace approximation [17, 18],

though are limited by the quality of the approximation. To overcome this,

we propose a method which performs the full Laplace approximation

without requiring the precision to be stored explicitly.

1.3 Large-Scale Laplace

We propose an implementation of the Laplace approximation which does

not require instantiation of the full posterior precision matrix. In general,

the Laplace approximation has two steps. First, we would like to learn a



1.3 Large-Scale Laplace 3

Neural Network

arg max𝜽

log 𝑝(𝜽 | 𝒚)

log 𝑝(𝒚)︷        ︸︸        ︷
log 𝑝(𝜽 | 𝒚)

log det𝚲

Training

Post-Hoc Online

𝜽map

Sample

𝜺 ∼ 𝒩(𝜽map ,𝚲−1)

= 𝜽map + 𝚲−1/2𝜺0

Inference

Figure 1.1: Overview of the Laplace ap-

proximation (LA) for Bayesian neural

networks. We highlight in green the com-

putations which we approximate in this

project using only Jacobian-vector prod-

ucts, namely the log-determinant (see

Chapter 3) and inverse square root (see

Chapter 4) of the posterior precision. Our

contributions allow us to forgo the typ-

ical crude approximations of the preci-

sion by performing the LA using the full

posterior precision without instantiating

it explicitly.

posterior distribution over the model parameters by maximising either

the posterior or the marginal likelihood. Maximising the posterior during

training is trivial, since it has a cheap closed-form gradient. However,

maximising the marginal likelihood is more difficult.

As we will prove later, the Laplace log-marginal likelihood is given by,

ignoring constant terms,

log 𝑝(𝒚) la≈ − 1

2

𝜌
𝑁∑
𝑖=1

∥𝒚𝑖 − 𝑓𝜽(𝒙𝑖)∥2 −
1

2

𝛼 ∥𝜽∥2 − 1

2

log det𝚲,

where𝚲 is the posterior precision. The first two terms are easy to compute

(and differentiate), but computing the log-determinant of very large

matrices is generally infeasible, since it typically has 𝑂(𝐷3) complexity

or requires storing the matrix in memory. To overcome this, we thus need

to estimate the log-determinant of the posterior precision matrix without

instantiating it.

The second step of the Laplace approximation is to perform inference

and make predictions from the posterior predictive distribution. We

estimate the posterior predictive via Monte Carlo by sampling from

the posterior distribution and averaging the model predictions over the

posterior samples. Since the posterior distribution is approximated by a

Gaussian, we sample from the posterior as

𝜺 = 𝜽map +𝚲−1/2𝜺0 ,

which effectively only requires computing the inverse square root of the

posterior precision matrix. This computation is also intractable for large

models, since it usually involves computing the Cholesky decomposition

of the precision, which suffers from the same performance issues as the

computation of the log-determinant.

As stated before, we will present a method which performs the full

Laplace approximation without explicitly storing the posterior precision

matrix. Our method approximates the posterior precision’s inverse square

root and log-determinant using only implicit Jacobian-vector products

(JVPs). These JVPs compute products of the posterior precision matrix

with a vector without storing the matrix itself in memory. Since this

product outputs a vector, the memory requirements are linear in the

number of parameters (rather than quadratic), allowing us to perform

the full Laplace approximation with significantly larger models. We use

JAX [19], a Python library for GPU-accelerated automatic differentiation

and computational graph compilation, to efficiently compute Jacobian-

vector products while only storing the implicit computational graph.

JAX uses XLA [20], a compiler for linear algebra, to compile the JVP

computation into efficient machine code. The computation of the log-

determinant and inverse square root of the precision will thus enable us

to perform training and inference using the Laplace approximation. An

overview of the Laplace approximation and our contributions is shown

in Figure 1.1.
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In this chapter, we discuss training and inference in deep learning from

a Bayesian perspective. We introduce the Laplace approximation as

a method for approximating the posterior distribution of a model’s

parameters given the data. We discuss the construction of the Laplace

posterior, its properties, and how it can be computed in practice.

2.1 Optimisation in Deep Learning

Suppose a neural network is a real-valued function 𝑓 : ℝ𝑁 ×ℝ𝐷 → ℝ𝑂

parametrised in 𝜽 ∈ ℝ𝐷
which maps an input 𝒙 ∈ ℝ𝑁

to an output

𝑓 (𝒙 , 𝜽) ≡ 𝑓𝜽(𝒙). Our goal is to find the parameters 𝜽∗ which best model

the observed data. From a frequentist perspective, we can define a loss

function on the model ℒ(𝜽) : ℝ𝐷 → ℝ such that the optimal parameters

𝜽∗ minimise this loss function for the given model. Often, we formulate

the loss function as the negative log-likelihood of the data under the

model, ℒ(𝜽) = − log 𝑝 (𝒚 | 𝜽). In this case, the goal of optimisation is to

find the parameters 𝜽∗ which maximise the likelihood of the data.
1

The likelihood function is problem-specific, and is defined as the proba-

bility density of the data given the parameters 𝜽. Typically, the likelihood

is chosen to be a Gaussian distribution with mean 𝑓𝜽(𝒙) and precision 𝜌
(which is frequently chosen to be equal to one) for regression problems,

and a categorical distribution with logits 𝑓𝜽(𝒙) for classification prob-

lems. These two cases correspond to the mean-squared error (MSE) and

cross-entropy (CE) negative log-likelihood loss functions, respectively.

Due to the assumption of independence between observations, we can

factorise the likelihood and the negative log-likelihood loss as

𝑝(𝒚 | 𝜽) =
𝑁∏
𝑖

𝑝(𝒚𝑖 | 𝜽), (2.1)

ℒ(𝜽) ≡ ℒ(𝜽, 𝒚) B − log 𝑝(𝒚 | 𝜽) = −
𝑁∑
𝑖

log 𝑝(𝒚𝑖 | 𝜽). (2.2)

This allows us to compute the loss as the sum of the losses for each

individual observation. This loss function is defined in an optimisation

problem to find the parameters 𝜽∗ of the model which minimise this loss,

thereby maximising the performance of the model on the data.

2.1.1 Gradient Descent

Gradient descent is a first-order optimisation algorithm which iteratively

updates the parameters 𝜽 in the direction of the negative gradient of the

loss function ℒ(𝜽).2 The update rule is given by

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝑡∇𝜽ℒ(𝜽𝑡), (2.3)
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where 𝜂𝑡 is the learning rate at iteration 𝑡. The learning rate 𝜂𝑡 can be

constant or adaptive, and is often chosen to be a non-increasing function

of 𝑡. The gradient ∇𝜽ℒ(𝜽𝑡 , 𝒙𝑡 , 𝑦𝑡) can be computed separately for each

individual training example 𝒙𝑡 , 𝑦𝑡 , as seen in Equation 2.1. Using the

chain rule on the composition of the loss into the loss as a function of the

model output ℒ and the model output as a function of the parameters 𝑓

such that ℒ(𝜽𝑡 , 𝒙𝑡 , 𝑦𝑡) = ℒ(𝑦𝑡 , 𝑓 (𝒙𝑡 , 𝜽𝑡)),we compute the gradient as

∇ 𝑓ℒ(𝜽𝑡 , 𝒙𝑡 , 𝑦𝑡) = ∇𝜽 log 𝑝(𝑦𝑡 | 𝜽)∇𝜽 𝑓𝜽𝑡 (𝒙𝑡), (2.4)

where∇𝜽 𝑓𝜽𝑡 (𝒙𝑡) is the gradient of the neural network output with respect

to its parameters at iteration 𝑡 and ∇𝜽 log 𝑝(𝑦𝑡 | 𝜽) is the gradient of the

loss function with respect to the model output. Note that in this case, we

perform one gradient update for each data point, which is why we iterate

over the data points and update the parameters in the same step 𝑡. Thus,

gradient descent only requires the gradient of the loss function with

respect to the parameters of the neural network, which can be computed

efficiently using automatic differentiation for a similar cost to a single

forward pass through the network. However, gradient descent is prone to

getting stuck in local minima and can be slow to converge. In practice, we

cannot compute the gradient of the loss function for the entire dataset at

once, since this would require storing the entire dataset in memory and

computing the gradient over it. Instead, we compute the gradient of the

loss for a subset of the data at each iteration (a batch), and then update

the parameters based on this unbiased estimate of the gradient. This is

known as stochastic gradient descent (SGD), and is the most common

form of gradient descent used in practice. SGD helps avoid getting stuck

in local minima, but, like gradient descent, does not take into account

the curvature of the loss function, and so can overshoot the minimum.

2.1.2 Adam

Adam [21] is a popular alternative to SGD for training neural networks.

It is an approximate second-order optimisation method, which means

that it approximates the curvature of the loss. It is a variant of SGD

that uses the first and second moments of the gradient of the loss to

scale the learning rate of each parameter. In Adam, the first moment

of the gradient is approximated by a moving average of the gradient

and the second moment of the gradient is approximated by a moving

average of the squared gradient. The moving averages are weighted by

the parameters 𝛽1 and 𝛽2. The learning rate is then scaled by the ratio of

the first and second moments. The update rule for Adam is thus

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝑡𝒎𝑡 ⊙
(√

𝒗𝑡 + 𝜀
)−1

, (2.5)

𝒎𝑡 = (1 − 𝛽𝑡
1
) [𝛽1𝒎𝑡−1 + (1 − 𝛽1)∇𝜽ℒ(𝜽𝑡)] , (2.6)

𝒗𝑡 = (1 − 𝛽𝑡
2
) [𝛽2𝒗𝑡−1 + (1 − 𝛽2)∇𝜽ℒ(𝜽𝑡) ⊙ ∇𝜽ℒ(𝜽𝑡)] , (2.7)

where ⊙ denotes the Hadamard product, 𝜀 is a small constant to prevent

division by zero, and 𝒎𝑡 and 𝒗𝑡 are the first and second moments of the

gradient respectively. The momentum term [22] takes inspiration from

physics, where the momentum of an object is the product of its mass and

velocity. In Adam, the first moment of the gradient is used to compute the

momentum of the parameters, increasing the convergence speed of the
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Since the marginal likelihood is a normal-

isation constant and does not depend on

the parameters, it does not affect the op-

timisation problem.

optimisation [23]. The second moment of the gradient is also known as

the variance of the gradient. Adam approximates the second moment by

the diagonal of the Fisher information matrix where the loss and model

function are assumed to be linear. This is a common approximation in

practice, as this approximation is easy to compute. The Fisher information

matrix is discussed further in Subsection 2.3.2. The use of the second

moment is inspired by optimisation methods such as Newton’s method

and the natural gradient [24], which use the second derivative of the loss

to compute the optimal step size by scaling the step by the inverse of the

curvature of the loss. These optimisation methods identify a single set of

parameters as the optimal solution. In the next section, we will discuss

how to learn a distribution over parameters instead.

2.2 Maximum a Posteriori Estimation

Bayesian deep learning is a framework for deep learning that allows for

modelling the parameters as random variables instead of as single optima

in the loss landscape. From a Bayesian perspective, we define a prior

distribution 𝑝(𝜽) and a likelihood function 𝑝 (𝒚 | 𝜽) such that, under

maximum a posteriori estimation, the goal of optimisation is to find

the parameters 𝜽∗ which maximise the posterior distribution 𝑝(𝜽 | 𝒚).
This way, we can quantify the uncertainty in our model parameters 𝜽 by

computing the posterior distribution 𝑝(𝜽 | 𝒚). It is obtained from Bayes’

theorem, which allows for uncertainty quantification by

𝑝(𝜽 | 𝒚) = 𝑝(𝒚 | 𝜽) 𝑝(𝜽)
𝑝(𝒚) , (2.8)

where 𝑝(𝜽 | 𝒚) is the posterior distribution over the parameters, 𝑝(𝜽)
is the prior distribution over parameters, 𝑝(𝒚 | 𝜽) is the likelihood of

the data given the parameters, and 𝑝(𝒚) is the marginal likelihood of

the data. The marginal likelihood is obtained by marginalising over the

parameters, i.e., 𝑝(𝒚) =
∫
𝑝(𝒚 | 𝜽) 𝑝(𝜽) 𝑑𝜽. Due to this integral, the

marginal is often intractable. However, since the posterior distribution is

proportional to the product of the likelihood by the prior, we can obtain

the unnormalised posterior from the likelihood and the prior

𝑝(𝜽 | 𝒚) ∝ 𝑝(𝒚 | 𝜽) 𝑝(𝜽) C �̃�(𝜽 | 𝒚). (2.9)

Since we want to determine the parameters which maximise the posterior

distribution, we can typically use the same optimisation techniques as

for frequentist learning, but with the negative log-posterior loss instead

of the negative log-likelihood. Furthermore, since the unnormalised

posterior from Equation 2.9 is proportional to the likelihood and the

prior, the exact posterior itself need not be tractable. Similarly to the

negative log-likelihood, we factorise the negative log-posterior

ℒ(𝜽) = − log 𝑝(𝜽 | 𝒚) = − log 𝑝(𝒚 | 𝜽) − log 𝑝(𝜽)

= −
𝑁∑
𝑖

log 𝑝(𝒚𝑖 | 𝜽)︸                ︷︷                ︸
Negative log-likelihood

− log 𝑝(𝜽)︸   ︷︷   ︸
Regularisation

. (2.10)
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3: In the frequentist setting, this type

of regularisation is known as weight

decay or 𝐿2-regularisation. Note that

−1/𝑁 log 𝑝(𝒚 | 𝜽)−𝛾/2 ∥𝜽∥2 is the typi-

cal formulation in this setting, where 𝛾 is

the regularisation strength and is usually

within the range of 10
−2

to 10
−4

. In our

setting, we are instead computing the log-

posterior − log 𝑝(𝒚 | 𝜽) − 𝛼/2 ∥𝜽∥2, and

so we must multiply the regularisation

strength by 𝑁 to obtain 𝛼.

4: The mean-field assumption refers to

the assumption that the parameters are

independent of each other which leads

to a diagonal covariance matrix.

Here the regularisation term is given by the prior distribution 𝑝(𝜽).
Due to the black-box nature of neural networks, it is often difficult to

define a prior distribution over the parameters using previous knowledge.

Because of this, the prior is often chosen to be a Gaussian distribution

with zero mean and a diagonal covariance matrix with some precision

𝛼, i.e., 𝑝(𝜽) = 𝒩(𝜽 | 0, 𝛼−1𝑰).3 The likelihood term is defined as in the

frequentist setting (see Section 2.1). However, the posterior distribution

itself is typically intractable, so we approximate the posterior instead.

We use the posterior to quantify the uncertainty in our model parameters.

Often, all that is needed is a set of samples from the posterior. From here,

we can make predictions in a Bayesian setting by computing the posterior

predictive distribution and using Monte Carlo sampling as

𝑝(𝑦∗ | 𝒚) =
∫

𝑝(𝑦∗ | 𝒙∗ , 𝜽) 𝑝(𝜽 | 𝒚) 𝑑𝜽,

≈ 1

𝑆

𝑆∑
𝑠=1

𝑝(𝑦∗ | 𝒙∗ , 𝜽𝑠), 𝜽𝑠 ∼ 𝑝(𝜽 | 𝒚),
(2.11)

where 𝑦∗ is the new data point and 𝑆 is the number of Monte Carlo

posterior samples 𝜽𝑠 . However, in some cases, it is useful to have a closed-

form expression for the posterior distribution. There are several methods

for approximating the posterior distribution, which we will discuss in the

following sections. Some, like Markov chain Monte Carlo (MCMC) [25],

are exact methods, which can be used to sample from the posterior

distribution directly (though they are often computationally expensive).

However, they cannot be used to compute the posterior distribution itself

directly. Others, like variational inference (VI) [26, 27], are methods which

attempt to find a tractable approximation to the posterior distribution

by parametrising a family of approximate posteriors and optimising the

parameters to minimise the KL divergence between the approximate

posterior and the true posterior. The performance of these methods

depends on the variational family used to approximate the posterior and

the choice of the variational parameters. One common choice for selecting

the variational family is to use a Gaussian distribution with diagonal

covariance matrix, which is known as mean-field VI.
4

Many variational

methods suffer from the difficulty of their optimisation problem, since

they often attempt to train variance parameters, which are difficult to

optimise [28]. In this project, we focus on the Laplace approximation,

in which the posterior is approximated by a Gaussian distribution, but

where the variance is deduced rather than optimised.

2.3 The Laplace Approximation

In the Laplace approximation (LA) [8, 9, 29, 30], the posterior is ap-

proximated by a Gaussian, similarly to mean-field VI. However, instead

of finding the optimal Gaussian distribution locations and scales by

maximising the ELBO, the LA finds the location by computing the MAP

solution 𝜽map and the scale by approximating the log-posterior with a

second degree Taylor expansion around this solution (𝜽0 = 𝜽map) and de-

termining the curvature via its Hessian matrix 𝚲 = − ∇2

𝜽 log 𝑝(𝜽 | 𝒚)
��
𝜽map

.

Since the Taylor expansion is performed around the MAP solution, the
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This normalisation constant is computed

as the marginal likelihood for the Laplace

approximation in Section 3.1.

5: From now on, we will use the notation

∇2

𝜽 𝑓 to represent the Hessian matrix of

𝑓 , where each element is given by(
∇2

𝜽 𝑓
)
𝑖 , 𝑗

=
𝜕2 𝑓

𝜕𝜃𝑖𝜕𝜃𝑗
.

first order derivative is zero, and the expansion is given by

log 𝑝(𝜽 | 𝒚) ≈ log 𝑝(𝜽map | 𝒚)+

+ 1

2

(𝜽 − 𝜽map)T
(
∇2

𝜽 log 𝑝(𝜽 | 𝒚)
��
𝜽map

)
(𝜽 − 𝜽map)

(2.12)

⇒ �̃�(𝜽 | 𝒚) ≈ 𝑝(𝜽map | 𝒚) exp

(
−1

2

(𝜽 − 𝜽map)T𝚲(𝜽 − 𝜽map)
)
, (2.13)

where �̃�(𝜽 | 𝒚) corresponds to the unnormalised posterior (Equation 2.9).

Dividing it by the normalisation constant 𝑝(𝒚) gives the normalised

posterior

𝑝(𝜽 | 𝒚) ≈

√
det(𝚲)
(2𝜋)𝐷

exp

(
−1

2

(𝜽 − 𝜽map)T𝚲(𝜽 − 𝜽map)
)

= 𝒩(𝜽 | 𝜽map ,𝚲−1).
(2.14)

The Laplace approximation can simply be trained to the MAP solution,

where the Hessian is computed to obtain the posterior precision at

inference time. This method is known as post-hoc Laplace. However, it is

also possible to compute the posterior precision during training. This can

be done either by sampling from the neural network at each iteration of

training and evaluating the gradient at each sample [11] or by estimating

the log-marginal likelihood [8, 31], enabling training of hyperparameters

and improved model selection. In this work, we approach the latter, as

well as post-hoc Laplace.

We have now shown that approximating the log-posterior with a second

degree Taylor expansion around the 𝜽map corresponds to approximating

the posterior with a Gaussian distribution given by 𝒩(𝜽 | 𝜽map ,𝚲−1)
where 𝚲 = − ∇2

𝜽 log 𝑝(𝜽 | 𝒚)
��
𝜽map

. However, this approximation only

holds when the posterior precision 𝚲 is positive definite. For BNNs, this

is not guaranteed as the loss function is not convex with respect to the

model parameters, which means that the normal distribution assumed by

the Laplace approximation may not be valid. Furthermore, the Hessian

is only ensured to be positive semi-definite at the MAP. This may not be

realistic when training neural networks, which tend to have unreliable

convergence [32]. In the next sections, we will go into the computation of

the Hessian for the negative log-posterior loss function from Section 2.2

and show how the generalised Gauss-Newton approximation can be

used to obtain a positive definite Hessian approximation, even when the

Hessian itself is not positive definite.

2.3.1 The Hessian

The Hessian is a matrix of second-order partial derivatives of a scalar

function.
5

Suppose we have a function ℒ : ℝ𝐷 → ℝ parametrised by

𝜽 ∈ ℝ𝐷
. Then the Hessian can be interpreted as the Jacobian matrix of

the gradient of the function, as per 𝐽𝜽(∇𝜽ℒ).

We are interested in the Hessian of the loss function ℒ(𝜽)with respect to

the parameters 𝜽. For a neural network with𝐷 parameters, the Hessian is

therefore a 𝐷 ×𝐷 square matrix. Furthermore, if all the neural network’s

second partial derivatives are continuous, then the Hessian is symmetric.
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In this case, the Hessian is generally dominated by the block-diagonal [15].

However, the Hessian will only be positive definite if the loss function is

a convex function in the model parameters 𝜽.

Typically, the loss function is defined as the negative log-likelihood or

negative log-posterior. In this framing, if we consider the negative log-

posterior loss from Equation 2.10, by the linearity of the derivative, we

obtain

∇2

𝜽ℒ(𝜽) = ∇
2

𝜽

(
−

𝑁∑
𝑖

log 𝑝(𝒚𝑖 | 𝜽) − log 𝑝(𝜽)
)

= − ∇2

𝜽

𝑁∑
𝑖

log 𝑝(𝒚𝑖 | 𝜽) − ∇2

𝜽 log 𝑝(𝜽)

= −
𝑁∑
𝑖

∇2

𝜽 log 𝑝(𝒚𝑖 | 𝜽) − ∇2

𝜽 log 𝑝(𝜽).

(2.15)

In this construction, the first term is the Hessian of the negative log-

likelihood, e.g., the Hessian of the MSE loss. For the common prior given

by a zero-mean Gaussian 𝜽 ∼ 𝒩(0, 𝛼−1𝑰), the log-prior regularisation

term is given by∇2

𝜽 log 𝑝(𝜽) = −𝛼𝑰. However, as we discussed previously,

the Hessian of the negative log-likelihood is not always positive definite.

In the next section, we will discuss how to obtain a positive definite

Hessian approximation.

2.3.2 The Generalised Gauss-Newton Approximation

From the expression of the posterior precision as the Hessian of the

negative log-posterior in Equation 2.15 we can apply the chain rule twice

and the product rule once to obtain a simpler expression,

∇2

𝜽ℒ = 𝐽𝜽(∇𝜽ℒ) = 𝐽𝜽
(
∇ 𝑓ℒ · 𝐽𝜽 𝑓

)
= 𝐽𝜽(𝐽𝜽 𝑓 ) · ∇ 𝑓ℒ + 𝐽𝜽

(
∇ 𝑓ℒ

)
· 𝐽𝜽 𝑓

= ∇2

𝜽 𝑓 · ∇ 𝑓ℒ + 𝐽𝜽 𝑓
T · ∇2

𝑓
ℒ · 𝐽𝜽 𝑓 ,

(2.16)

where ∇ 𝑓 is the gradient with respect to 𝑓 (𝒙 , 𝜽) and 𝐽𝜽 is the Jacobian

with respect to 𝜽. More precisely, we obtain

∇2

𝜽ℒ𝑖 𝑗 =
𝑂∑
𝑛=1

𝜕2

𝜕𝜃𝑖𝜃𝑗
𝑓𝑛 ·

𝜕

𝜕 𝑓𝑛
ℒ +

𝑂∑
𝑛,𝑚=1

𝜕

𝜕𝜃𝑖
𝑓𝑛 ·

𝜕2

𝜕 𝑓𝑛 𝑓𝑚
ℒ · 𝜕

𝜕𝜃𝑗
𝑓𝑚 , (2.17)

where 𝑓𝑛 is the 𝑛th
output of the neural network function 𝑓 (𝒙 , 𝜽).

Assume now we will approximate 𝑓 using a first-order Taylor expan-

sion. In this way, we are linearising our neural network function. This

approximation is given by

𝑓𝜽(𝒙) ≈ 𝑓𝜽0
(𝒙) + ∇𝜽 𝑓𝜽0

(𝒙) · (𝜽 − 𝜽0). (2.18)

Notice that ∇2

𝜽 𝑓𝜽0
(𝒙) = 0 under the Taylor expansion assumption of

neural network linearity. By combining Equations 2.16 and 2.18 we then
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6: This is equivalent to the loss function

being a convex function of the model

outputs.

obtain the generalised Gauss-Newton approximation of the Hessian,

∇2

𝜽ℒ ≈ ∇𝜽 𝑓
T · ∇2

𝑓
ℒ · ∇𝜽 𝑓 , (2.19)

which corresponds to the second term in Equation 2.16. This means

that the GGN approximation is an approximation to the Hessian of the

composition of two functions, ℒ(𝜽) ≡ (ℒ ◦ 𝑓 )(𝜽) where we linearise the

inner function 𝑓 around a point 𝜽0. For a given negative log-likelihood

loss ℒ, we thus have the GGN approximation of the Hessian

∇2

𝜽ℒ(𝜽) =
𝑁∑
𝑖

∇2

𝜽 log 𝑝(𝒚𝑖 | 𝜽)

≈
𝑁∑
𝑖=1

𝐽𝜽 𝑓 (𝒙𝑖 , 𝜽)︸     ︷︷     ︸
𝑱T
𝑖

T
(
∇2

𝑓
ℒ(𝒚𝑖 , 𝑓 (𝒙𝑖 , 𝜽))

)
︸                   ︷︷                   ︸

𝑯𝑖

𝐽𝜽 𝑓 (𝒙𝑖 , 𝜽)︸     ︷︷     ︸
𝑱𝑖

.
(2.20)

For a normal prior with precision 𝛼 on 𝜽, we obtain the GGN approxi-

mation of the posterior precision

𝚲 ≈
𝑁∑
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖 + 𝛼𝑰 , (2.21)

where we have defined 𝑱𝑖 = 𝐽𝜽 𝑓 (𝒙𝑖 , 𝜽) and 𝑯𝑖 = ∇2

𝑓
ℒ(𝒚𝑖 , 𝑓 (𝒙𝑖 , 𝜽)).

For mean square error (MSE) loss (e.g. for regression), we obtain the

simple expression for the GGN approximation of the Hessian

𝑯𝑖 ≈ (𝒚𝑖 − 𝑓 (𝒙𝑖 , 𝜽))2 = 2𝑰 , (2.22)

𝚲 ≈ 2

𝑁∑
𝑖=1

𝑱T
𝑖 𝑱𝑖 + 𝛼𝑰 . (2.23)

If the Hessian of the loss function with respect to the model outputs 𝑯𝑖

is positive semidefinite, the GGN approximation is positive semidefinite,

since each term in the sum 𝑱T
𝑖
𝑯𝑖𝑱𝑖 is positive semidefinite.

6
Furthermore,

this is the case for most common loss functions, such as MSE loss and cross-

entropy loss. For the case of the normal prior, the GGN approximation

of the posterior precision will be positive definite, since the eigenvalues

of 𝛼𝑰 are all 𝛼 > 0 and the eigenvalues of

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 are all greater than

or equal to zero.

It is also interesting to note that, for our definition of the loss, the GGN

approximation of the Hessian is equivalent to the Fisher information

matrix, which is a measure of the curvature of the log-likelihood function

with respect to the model parameters. Here, the Fisher information matrix

is given by

ℱ =

𝑁∑
𝑖=1

E𝑝(𝑦 | 𝒙𝑖 ,𝜃)
[
∇𝜽 log 𝑝(𝑦 | 𝒙𝑖 , 𝜽) · ∇𝜽 log 𝑝(𝑦 | 𝒙𝑖 , 𝜽)T

]
, (2.24)

where E𝑝(𝑦 | 𝒙𝑖 ,𝜃) [•] denotes the expectation with respect to the likelihood

function. The Fisher matrix (and its empirical equivalent) is relevant as it

motivates second-order methods such as natural gradient descent (and

thus the Adam optimiser) and the use of the GGN approximation.
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2.3.3 Practical Considerations for the GGN

The generalised Gauss-Newton approximation requires that the function

for which we would like to compute the Hessian, ℎ(𝑥), can be framed as

a composition of two functions ℎ(𝑥) = 𝑔( 𝑓 (𝑥)). However, there are many

possible choices of functions 𝑓 and 𝑔 which, when composed, yield ℎ,

and these different compositions can yield wildly varying performance

for the GGN approximation [33]. Given that, in our case, ℎ is the loss

function with respect to the model parameters of a neural network, a

natural choice of functions (and the choice we have assumed above) are

𝑔 : ℝ𝑂 → ℝ and 𝑓 : ℝ𝐷 → ℝ𝑂
where 𝑔 is the loss function with respect

to the model output and 𝑓 is a function which maps the model parameters

to a model output, for a given model input 𝑥. This construction allows

us to capture the curvature of the loss with respect to the model output,

which can often be easily computed in a simple closed form, without

requiring the computation of the curvature of the model function with

respect to its parameters; this therefore corresponds to linearising the

model function with a Taylor expansion as in Equation 2.18. However,

this is not the only possible construction.

Another choice is to linearise the whole likelihood function with respect

to the model parameters. This yields 𝑔(𝑦) = − log(𝑦), and thus we obtain

the GGN approximation of the Hessian with this composition as

∇2

𝜽ℒ = ∇𝜽 𝑓 T · ∇2

𝑓
𝑔 · ∇𝜽 𝑓 = ∇𝜽 𝑓 T · 𝑓 (𝜽)−2 · ∇𝜽 𝑓

=
(
𝑓 (𝜽)−1 · ∇𝜽 𝑓

)T ·
(
𝑓 (𝜽)−1 · ∇𝜽 𝑓

)
=

(
−∇ 𝑓 𝑔 · ∇𝜽 𝑓

)T ·
(
−∇ 𝑓 𝑔 · ∇𝜽 𝑓

)
= [∇𝜽(𝑔 ◦ 𝑓 )]T · [∇𝜽(𝑔 ◦ 𝑓 )] = ∇𝜽ℒT · ∇𝜽ℒ.

(2.25)

The diagonal of this matrix is given by the element-wise square of the

gradient ∇𝜽ℒ ⊙ ∇𝜽ℒ. Notice that this is the second-order term used in

the Adam optimiser, which we discussed in Subsection 2.1.2.

The choice of application of the generalised Gauss-Newton approximation

is not based on having a reduced computational cost—both the Hessian

and the GGN approximation require the same number of forward and

backward passes. However, the GGN approximation is better behaved

than the exact Hessian since it is guaranteed to be positive semidefinite for

convex losses, thereby making it more suitable for practical applications.

This is because the GGN approximation is designed to be positive semi-

definite, while the exact Hessian can be vulnerable to negative curvature.

This feature can limit the use of the exact Hessian for algorithms that

require a positive definite Hessian, such as, in our case, the Laplace

approximation.

In practice, as we explained in Chapter 1, we are looking for methods

which access the product of the GGN matrix with a vector, rather than

the GGN matrix itself. This then means we want to compute

𝚲𝒗 =

(
𝑁∑
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖 + 𝛼𝑰

)
𝒗

=

𝑁∑
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖𝒗 + 𝛼𝒗 ,

(2.26)
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7: By “same ordering” we mean that they

are eigenvectors with respect to the same

relative eigenvalue.

8: If the GGN matrices 𝑱T𝑯𝑱 have an

identical spectrum

{𝑠1 , 𝑠2 , . . . , 𝑠𝑂︸          ︷︷          ︸
𝑂

, 0, . . . , 0︸  ︷︷  ︸
𝐷−𝑂

},

then the sum of GGN matrices as per∑𝑁 𝑱T𝑯𝑱 = 𝑁𝑱T𝑯𝑱 has the spectrum

{𝑁𝑠1 , . . . , 𝑁𝑠𝑂︸            ︷︷            ︸
𝑂

, 0, . . . , 0︸  ︷︷  ︸
𝐷−𝑂

}.

such that we actually compute the product of the Jacobian of the neural

network (as defined in Equation 2.20) by a vector 𝒗, i.e., 𝑱𝑖𝒗.

2.3.4 The Spectrum of the GGN Approximation

When we construct the posterior precision for the Laplace approximation,

we compute the posterior precision as in Equation 2.21. For methods

which we will introduce later, we are interested in the spectrum (i.e.,

the set of eigenvalues) of the posterior precision. The eigenvalues of this

precision will thus be the sum of the eigenvalues of

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 and of 𝛼𝑰,

where 𝛼 > 0 is the prior precision. The first term, being the positive semi-

definite GGN matrix, will have non-negative eigenvalues. The second

term, being a diagonal matrix with entries 𝛼, will have eigenvalues that

are all equal to 𝛼. Therefore, the eigenvalues of the posterior precision

will be the sum of the eigenvalues of the GGN matrix and 𝛼 and will

thus all be positive. This means that the prior precision 𝛼 guarantees the

positive definiteness of the posterior precision. For some applications, it

is desirable to have a weak prior, so that the regularisation effect of the

prior is not too strong. While, theoretically speaking, the eigenvalues of

the likelihood GGN matrix are greater than or equal to zero, in practice,

due to numerical issues, the eigenvalues can be slightly negative. As

such, 𝛼 must be chosen to be sufficiently large to ensure that the posterior

precision is positive definite. While this may appear to detract from the

effectiveness of the prior, it is important to note that, in most cases, the

prior precision is large enough to ensure that the posterior precision is

positive definite.

Since 𝑱𝑖 is a rectangular matrix of shape 𝑂 × 𝐷, the rank of each 𝑱T
𝑖
𝑯𝑖𝑱𝑖

is at most 𝑂, where 𝑂 is the number of outputs of the model. The rank

of the sum of these matrices thus depends on the eigenvectors of each

𝑱T
𝑖
𝑯𝑖𝑱𝑖 . If we add 𝑱T

𝑛𝑯𝑛𝑱𝑛 into the sum

∑𝑛−1

𝑖=1
𝑱T
𝑖
𝑯𝑖𝑱𝑖 , then, if any of the

eigenvectors of 𝑱T
𝑛𝑯𝑛𝑱𝑛 are not contained in the span of the eigenvectors

of the sum, then the rank of the sum will increase. This is because the

rank of a matrix is the number of linearly independent columns. Thus,

non-rigorously, we have that the closer the eigenvectors (assuming that

the eigenvectors have the same ordering between the two matrices) are

between terms in the sum, the closer the largest eigenvalue will be to the

sum of the largest eigenvalues of each term.
7

Practically speaking, this

means that the rank of the sum of the GGN matrices can increase as we

add more data points (but will not be greater than 𝑁 · 𝑂). Furthermore,

as we add more data points, the eigenvalues of the sum of the GGN

matrices will increase. Specifically, the largest eigenvalue of the sum of

the GGN matrices will be the less than or equal to the sum of the largest

eigenvalues of the GGN matrices. Additionally, the non-zero spectrum

of the sum of the GGN matrices will itself get steeper as we add more

data points. If the 𝑂 non-zero eigenvectors are identical across the GGN

matrices, then this non-zero spectrum of the sum of the GGN matrices

will just be the sum of the spectrum of each GGN matrix and should

thus not get steeper.
8

However, if these eigenvectors are not identical,

then as the largest eigenvalue of the sum of the GGN increases and the

number of non-zero eigenvalues of the sum of the GGN increases, the

non-zero spectrum of the sum of the GGN matrices will get steeper. For

these reasons, as we add more data points, the posterior precision will
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9: A matrix is considered ill-conditioned

when the ratio of its largest eigenvalue to

its lowest eigenvalue, its condition number
(𝜅 B 𝜆max/𝜆min), is very large.

15400 15425 15450
10−1
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101

3× 3 kernel
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Prior

17400 17600

100

102
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Figure 2.1: Spectrum of the Laplace pos-

terior precision on 100 MNIST observa-

tions with a CNN. Note the log scale and

the fact that we are zoomed in on the

largest eigenvalues, as can be seen from

the eigenvalue indices on the x-axis. For

the 3× 3 filter, there are two distinct clus-

ters in the spectrum, with the first cluster

being over an order of magnitude larger

than the second. This first cluster con-

sists of nine eigenvalues, and so the pre-

cision has an effective rank close to nine.

For the 5 × 5 filter, we observe a hyper-

exponential distribution of eigenvalues

in this spectrum, which does not have

any distinct clusters. This suggests that

the effective rank of the precision is over

50, which is still significantly lower than

the number of observations 𝑁 = 100

times the number of outputs 𝑂 = 10.

become more ill-conditioned.
9

If the sum of the GGN matrices is indeed

low-rank, then the prior precision 𝛼 will be the smallest eigenvalue of

the posterior precision.

Empirically, we find that, for MNIST, the effective rank of the posterior

precision is significantly less than 𝑁 · 𝑂 (see Figure 2.1). This suggests

that the eigenvectors of the posterior precision are relatively similar

across different observations, though not identical. However, this seems

to greatly depend on the structure of the neural network (e.g., the filter

size) in ways that are not yet clear.

2.4 Limitations

One limitation of the Laplace approximation is that it can only approxi-

mate one mode of the posterior distribution (the MAP). However, most

approximate posterior distributions, such as MCMC and variational

inference, also struggle to approximate multimodal distributions. The

standard way to solve this problem is to use a multimodal approximation

such as a mixture, typically by training multiple models from differ-

ent initialisations and then combining them in a deep ensemble. This

is also possible with the Laplace approximation [34]. However, deep

ensembles are quite expensive, as they require training multiple mod-

els. Additionally, it is not clear whether there is a significant benefit to

using a multimodal Laplace approximation over a single mode Laplace

approximation (i.e., whether generalisation improves).

Another limitation of the Laplace approximation is that it is not scalable

to non-trivial problems for the full Laplace approximation without

performing crude approximations. This is because the full Laplace

approximation requires the computation of the posterior precision, which

is a 𝐷 × 𝐷 matrix, where 𝐷 is the number of parameters. Thus, in order

to scale to large models and large datasets without approximating the

posterior precision with, e.g., a diagonal matrix, we need to find a

method to perform the Laplace approximation without instantiating

the posterior precision. During training, we typically only need to train

the model in a deterministic way (to find the MAP), and then we

can use the Laplace approximation to sample from the approximate

posterior post-hoc. Thus, for inference, we need to determine a method

for sampling from the Gaussian approximate posterior without explicitly

computing the posterior precision. We have so far only considered the

Laplace approximation computed by maximising posterior (i.e., MAP

estimation), but it is also possible to perform the Laplace approximation

by training a model on its marginal likelihood (i.e., the likelihood of the

data under the model). This would reduce overfitting and allow us to

optimise hyperparameters via backpropagation. However, we must find

a differentiable way to compute the Laplace approximate log-marginal

likelihood without explicitly storing the posterior precision.
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In this chapter, we will discuss training neural networks by maximising

the evidence under the Laplace approximation. We first motivate max-

imising the evidence as opposed to maximising the posterior and discuss

how the Laplace approximation guarantees the feasibility of the evidence,

as well as the issues that arise when computing the marginal likelihood

with the full posterior precision. Next, we propose a novel method for

computing an upper bound on the log-determinant of the full posterior

precision matrix which avoids the aforementioned issues. Finally, we

discuss the implementation of online Laplace with mini-batching using

our upper bound.

3.1 Maximising the Evidence

As seen in Equation 2.8, the posterior probability for a given model is

𝑝(𝜽 | 𝒚) = 𝑝(𝒚 | 𝜽) 𝑝(𝜽)
𝑝(𝒚) , (3.1)

where 𝑝(𝒚) is known as the evidence. It is also known as the marginal
likelihood, as it is obtained by marginalising 𝜽 from the likelihood as

𝑝(𝒚) =
∫
𝜽
𝑝(𝒚 | 𝜽) 𝑝(𝜽) 𝑑𝜽. (3.2)

This term is typically intractable, since it involves integrating over the

entire parameter space. For this reason, we typically approximate the

posterior by some tractable distribution, such as a Gaussian, and then

use this to approximate the marginal likelihood.

Since we are integrating over the posterior, maximising the marginal

likelihood will seek minima that are flat, since the posterior will be very

broad in these regions. This is a desirable property, since it means that

the model will be less likely to overfit the data, both from a theoretical

standpoint [35] and in practice [7, 36, 37].

To further motivate training on the evidence term, Fong and Holmes [38]

show that maximising the marginal (and consequently the log-marginal)

is equivalent to performing leave-p-out cross validation for all values

𝑝 = 1, . . . ,∞ and choosing the model with the highest average posterior

probability (across each of 𝑝 folds and across all values of 𝑝). This result

shows that the marginal likelihood is a good proxy for the true cross-

validation performance of a model. Because of this, it can be used for

model selection, since it will choose the model that performs best on

average across all permutations of the data.

Additionally, unlike the posterior, the marginal likelihood can be used

to optimise both model parameters and hyperparameters, since we can

meaningfully minimise the log-marginal with respect to the hyperparam-

eters (and compute the respective gradients). This is useful, since it allows
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In reality, we will not be at the MAP

solution when optimising the marginal,

neither during training nor after con-

vergence (the marginal and the pos-

terior have different minima). In this

case, we cannot neglect the first deriva-

tive term in Equation 3.3. However,

when this term is not zero, the Laplace

posterior is 𝒩(𝜽 | 𝜽∗
map

,𝚲−1), where

𝜽∗
map
B 𝜽map + 𝚲−1∇𝜽 log 𝑝(𝜽map | 𝒚).

This corresponds to shifting the param-

eters to the MAP with a Newton step

𝜽∗
map
B 𝜽map−∇2

𝜽ℒ(𝜽map)−1∇𝜽ℒ(𝜽map),
since Newton’s method finds the mini-

mum in one step for quadratic functions

(like the second order Taylor expansion

to our loss).

us to use gradient-based optimisation methods to find the hyperparame-

ters that maximise the marginal likelihood, as has been commonly done

in Gaussian processes [39, 40]. This provides an alternative to finding the

hyperparameters by grid search, which is computationally expensive.

The Laplace approximation provides an approximation to the posterior

which allows us to compute and maximise the marginal likelihood.

This is known as online Laplace, and is an alternative to the post-hoc
Laplace approach, which is the standard approach to training under the

Laplace approximation [8]. Under this approximation, we approximate

the posterior distribution as 𝑝(𝜽 | 𝒚) ≈ 𝒩(𝜽 | 𝜽map ,𝚲−1), where the

posterior precision 𝚲 = ∇2

𝜽ℒ(𝜽map) is the Hessian of the negative log-

posterior at the maximum a posteriori (MAP) estimate 𝜽map. As in

Equation 2.12, we have the approximate Laplace log-posterior

log 𝑝(𝜽 | 𝒚) la≈ log 𝑝(𝜽map | 𝒚) + ∇𝜽 log 𝑝(𝜽map | 𝒚) · (𝜽 − 𝜽map)

+ 1

2

(𝜽 − 𝜽map)∇2

𝜽 log 𝑝(𝜽map | 𝒚)(𝜽 − 𝜽map)

= log 𝑝(𝜽map | 𝒚) −
1

2

(𝜽 − 𝜽map)𝚲(𝜽 − 𝜽map).

(3.3)

The approximate Laplace marginal is then computed as

𝑝(𝒚) la≈
∫
𝜽
𝑝(𝜽map | 𝒚) exp

(
−1

2

(𝜽 − 𝜽map)𝚲(𝜽 − 𝜽map)
)
𝑑𝜽

= 𝑝(𝜽map | 𝒚)
∫
𝜽

exp

(
−1

2

(𝜽 − 𝜽map)𝚲(𝜽 − 𝜽map)
)
𝑑𝜽

= 𝑝(𝜽map | 𝒚) (2𝜋)𝐷/2 (det𝚲)−1/2.

(3.4)

Taking the log of this approximate marginal, we obtain

log 𝑝(𝒚) la≈ log 𝑝(𝜽map | 𝒚) +
𝐷

2

log(2𝜋) − 1

2

log det𝚲 (3.5)

= log 𝑝(𝒚 | 𝜽map) + log 𝑝(𝜽map) +
𝐷

2

log(2𝜋) − 1

2

log det𝚲.

For the normal likelihood and normal prior, we have

𝑝(𝒚 | 𝜽) = 𝒩(𝒚 | 𝑓𝜽(𝒙), 𝜌−1𝑰) =
𝑁∏
𝑖=1

𝒩(𝒚𝑖 | 𝑓𝜽(𝒙𝑖), 𝜌−1𝑰), (3.6)

log 𝑝(𝒚 | 𝜽) =
𝑁∑
𝑖=1

log𝒩(𝒚𝑖 | 𝑓𝜽(𝒙𝑖), 𝜌−1𝑰) (3.7)

=

𝑁∑
𝑖=1

(
−𝑂

2

log(2𝜋) − 1

2

log det(𝜌−1𝑰) − 1

2

𝜌 ∥𝒚𝑖 − 𝑓𝜽(𝒙𝑖)∥2
)

= − 𝑁𝑂
2

log(2𝜋) + 𝑁𝑂
2

log 𝜌 − 1

2

𝜌
𝑁∑
𝑖=1

∥𝒚𝑖 − 𝑓𝜽(𝒙𝑖)∥2 ,

and

𝑝(𝜽) = 𝒩(𝜽 | 0, 𝛼−1𝑰), (3.8)

log 𝑝(𝜽) = − 𝐷
2

log(2𝜋) + 𝐷
2

log 𝛼 − 1

2

𝛼 ∥𝜽∥2 , (3.9)

where 𝛼 is the precision of the prior and 𝜌 is the precision of the
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likelihood. Combining Equations 3.5, 3.7 and 3.9, we expand the Laplace

approximation to the log-marginal likelihood as

log 𝑝(𝒚) la≈ − 𝑁𝑂
2

log(2𝜋) + 𝑁𝑂
2

log 𝜌 − 1

2

𝜌
𝑁∑
𝑖=1

∥𝒚𝑖 − 𝑓𝜽(𝒙𝑖)∥2

− 𝐷
2

log(2𝜋) + 𝐷
2

log 𝛼 − 1

2

𝛼 ∥𝜽∥2

+ 𝐷
2

log(2𝜋) − 1

2

log det𝚲,

(3.10)

where it can be seen that there are constant terms which do not depend

on 𝜽, 𝛼, or 𝜌. While these terms are not necessary for the optimisation

problem, we choose to include them, as these terms allow us to interpret

the log-marginal as a likelihood and do not significantly affect perfor-

mance. From Equation 3.10, we can see that the Laplace log-marginal

likelihood requires computation of the log-determinant of the posterior

precision matrix. This log-determinant term gets minimised in our opti-

misation, which favours models with small eigenvalues in the Hessian of

the loss, i.e., points of low curvature in the loss landscape, as we argued

earlier in this section. This is a challenging computation, as there is no

cheap closed-form expression for the log-determinant of a matrix without

instantiating the matrix. However, we can compute an upper bound on

the log-determinant of the posterior precision matrix, which is useful for

our optimisation problem which minimises the log-determinant term.

3.2 The Determinant Bound

We want to compute an upper bound on the log-determinant of the pos-

terior precision 𝚲 ∈ ℝ𝐷×𝐷
such that we have log det𝚲 ≤ 𝐵𝐷(𝜇1 , 𝜇2 , 𝛽).

Bai and Golub [41] provide one such bound,

𝐵𝐷(𝜇1 , 𝜇2 , 𝛽) B
(
log 𝛽 log 𝑡

) (
𝛽 𝑡

𝛽2 𝑡2

)−1
(
𝜇1

𝜇2

)
, (3.11)

with 𝜇1 = Tr(𝚲), 𝜇2 = ∥𝚲∥2𝐹 = Tr

(
𝚲2

)
, 𝑡 =

𝛽𝜇1−𝜇2

𝛽𝐷−𝜇1

, where 𝛽 is an

upper bound on the largest eigenvalue of 𝚲. This bound amounts to

approximating the log eigenvalues of 𝚲 with a second-order polynomial.

Since 𝐵𝐷(𝜇1 , 𝜇2 , 𝛽) is an upper bound on the log-determinant of 𝚲, we

are computing a lower bound on the log-marginal likelihood (which we

maximise), as per Equation 3.10.

Assume

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 has rank 𝐾 ≤ 𝑂 · 𝑁 . Then 𝚲 =

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 + 𝛼𝑰

has 𝐾 distinct eigenvalues greater than 𝛼 and the remaining 𝐷 − 𝐾
eigenvalues are equal to 𝛼. We then decompose the log-determinant as

log det𝚲 =

𝐾∑
𝑘=1

log(𝜆𝑘 + 𝛼) +
𝐷∑

𝑘=𝐾+1

log 𝛼

=

𝐾∑
𝑘=1

log(𝜆𝑘 + 𝛼) + (𝐷 − 𝐾) log 𝛼,

(3.12)

where 𝜆1 , . . . ,𝜆𝐾 are the non-zero eigenvalues of

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 . The first

term is the log-determinant of a positive definite matrix with eigenvalues
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1: Since the matrix is positive semidefi-

nite, all eigenvalues are non-negative and

thus the trace is bigger than the largest

eigenvalue.

{𝜆1 + 𝛼, . . . ,𝜆𝐾 + 𝛼}, and the second term is a constant. The former

can then be bounded using Equation 3.11 with an upper bound on its

eigenvalues 𝛽 ≥ 𝜆1 + 𝛼 as 𝐵𝐷
(∑𝐾

𝑘=1
(𝜆𝑘 + 𝛼),∑𝐾

𝑘=1
(𝜆𝑘 + 𝛼)2 , 𝛽

)
. We then

compute the trace of this term as in Equation 3.14 via

Tr𝚲 =

𝐾∑
𝑘=1

(𝜆𝑘 + 𝛼) + (𝐷 − 𝐾)𝛼 (3.13)

⇒
𝐾∑
𝑘=1

(𝜆𝑘 + 𝛼) = Tr𝚲 − (𝐷 − 𝐾)𝛼

= Tr

(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
+ 𝐾𝛼,

(3.14)

and for the square trace we have

𝐾∑
𝑘=1

(𝜆𝑘 + 𝛼)2 = Tr

( (∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
2

)
+ 2𝛼 Tr

(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
+ 𝐾𝛼2. (3.15)

We can thus bound log det𝚲 with Equations 3.12, 3.14 and 3.15 as

log det𝚲 ≤ 𝐵𝐾 (𝜇1 , 𝜇2 , 𝛽) + (𝐷 − 𝐾) log 𝛼, (3.16)

𝜇1 = Tr

(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
+ 𝐾𝛼, (3.17)

𝜇2 = Tr

( (∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
2

)
+ 2𝛼 Tr

(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
+ 𝐾𝛼2. (3.18)

For the upper bound 𝛽 on the eigenvalues of

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 , we can exploit

that this matrix is positive semidefinite and use 𝛽 = Tr(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖)+𝛼 as

an upper bound.
1

From Equations 3.17 and 3.18, we can see that we need

to calculate the traces Tr(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖) and Tr((∑𝑁

𝑖=1
𝑱T
𝑖
𝑯𝑖𝑱𝑖)2) to compute

the upper bound on the log-determinant of the posterior precision.

3.2.1 Hutchinson’s Trace Estimator

To compute the upper bound on the log-determinant of the posterior

precision, we need to compute 𝜇1 and 𝜇2, which depend on the traces

Tr(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖) and Tr((∑𝑁

𝑖=1
𝑱T
𝑖
𝑯𝑖𝑱𝑖)2). To compute these, we can use

Hutchinson’s trace estimator [42]. Let 𝜺0 ∼ 𝒩(0, 𝑰). Since E

[
𝜺0𝜺T

0

]
= 𝑰,

we compute 𝜇1 as

𝜇1 = Tr(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖) + 𝐾𝛼, (3.19)

Tr(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖) = Tr

(
E

[
𝜺0𝜺

T
0

] (∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

) )
= E

[
Tr(𝜺0𝜺

T
0

(∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

)
)
]

= E

[
𝜺T

0

(∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

)
𝜺0

]
.

(3.20)

Similarly, we compute 𝜇2 as

𝜇2 = Tr

( (∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

)
2

)
+ 2𝛼 Tr

(∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

)
+ 𝐾𝛼2 , (3.21)

Tr

( (∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

)
2

)
= E

[
𝜺T

0

(∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

) (∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖

)T
𝜺0

]
. (3.22)

We then apply a Monte Carlo approximation of the expectation by sam-

pling 𝑆 samples from 𝜺0 ∼ 𝒩(0, 𝑰) to compute the traces. Fortunately,

this means that we only need to compute one GGN-vector product
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∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 · 𝜺0 to estimate the 𝜇1 and 𝜇2 terms in Equation 3.16. Further-

more, we have that the trace can be rearranged and simplified to

Tr

(∑𝑁
𝑖=1

𝑱T
𝑖 𝑯𝑖𝑱𝑖︸ ︷︷ ︸
𝐷×𝐷

)
=

𝑁∑
𝑖=1

Tr

(
𝑱T
𝑖 𝑯𝑖𝑱𝑖

)
=

𝑁∑
𝑖=1

Tr

(
𝑯𝑖𝑱𝑖𝑱T

𝑖︸ ︷︷ ︸
𝑂×𝑂

)
, (3.23)

which means we can reduce the dimensionality of 𝜺0 to the number

of model outputs 𝑂 instead of the (significantly larger) number of

parameters 𝐷, reducing the variance and computational cost of the trace

estimator. Empirically, we find that, without the trace rearrangement

in Equation 3.23, the variance of the trace estimator is too high to be

useful.

3.2.2 Scaling

In standard negative log-likelihood training, the only term in the loss

is − log 𝑝(𝒚 | 𝜽). For regression, the loss function which has a Bayesian

interpretation as the negative log-likelihood is the sum of squared

errors (SSE), though often the mean squared error is used instead, since

computing the correct gradient just involves scaling the step size 𝜂 up

by the number of observations 𝑁 . For negative log-posterior training,

the same scaling can be applied with a Gaussian prior by dividing the

prior precision by 𝑁 . However, for the log-marginal likelihood, scaling

the terms is no longer possible, since scaling the loss by a constant will

not affect the gradients of the log-determinant term. This means that it is

important to compute the negative log-likelihood correctly as the SSE,

since the gradients of the log-marginal likelihood are not invariant to

scaling the log-marginal by a constant. To compute the posterior precision

using a mini-batch, we thus have to scale the likelihood term by 𝑁/𝐵
to account for the likelihood being computed on a mini-batch of size 𝐵

instead of the full dataset of size 𝑁 , yielding 𝑁/𝐵∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖 + 𝛼𝑰. The

log-determinant of this mini-batched precision is equivalent to

log det

(
𝑁

𝐵

∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖 + 𝛼𝑰

)
= log det

(
𝑁

𝐵

(∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖 + 𝐵
𝑁 𝛼𝑰

) )
(3.24)

= 𝐷 log

𝑁

𝐵
+ log det

(∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖 + 𝐵
𝑁 𝛼𝑰

)
.

The scaling is thus important for determining the relative importance of

the prior and likelihood terms in the eigenvalues. To correctly compute

the log-determinant of the posterior precision, we scale the trace and

square traces for Equations 3.17 and 3.18 as

Tr

(
𝑁

𝐵

∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖

)
=
𝑁

𝐵
Tr

(∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖
)
, (3.25)

Tr

((
𝑁

𝐵

∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖

)
2

)
=
𝑁2

𝐵2

Tr

( (∑𝐵
𝑖=1

𝑱𝑖𝑯𝑖𝑱𝑖
)
2

)
. (3.26)

By combining Equations 3.11, 3.16, 3.19, 3.21, 3.23, 3.25 and 3.26, we can

therefore compute a differentiable upper bound on the log-marginal

likelihood under the Laplace approximation using only Jacobian-vector

products without needing to instantiate the posterior precision.
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We will now discuss how to perform inference by sampling from the

Laplace posterior distribution. We first give an overview of how we

typically sample from the Laplace posterior and discuss the memory con-

straints of this sampling method when using the full posterior precision

matrix. In Section 4.2, we propose an algorithm for sampling from the

Laplace posterior that does not require storing the full precision matrix,

allowing us to scale sampling to larger models. Finally, we discuss how

to mitigate some of the issues of our method (Section 4.3) and propose a

practical technique for determining whether sampling was successful

(Section 4.4).

4.1 Sampling from the Laplace Posterior

In many methods, such as the Laplace approximation (Section 2.3),

we sample from a multivariate normal distribution parametrised by a

mean vector 𝝁 and a covariance matrix 𝚺. To sample from a Gaussian

distribution, you can apply the reparametrisation trick to compute a

vector of samples as

𝜺 = 𝝁 + 𝚺1/2𝜺0 , (4.1)

where 𝜺0 are samples drawn from a standard normal distribution, i.e.,

𝜺0 ∼ 𝒩(0, 𝑰).

Using the Laplace approximation, we estimate the precision matrix as the

Hessian matrix of the loss with respect to the parameters, as discussed in

Section 2.3. Because of this, the covariance matrix is given by the inverse

of this Hessian, and we thus sample from the Laplace-approximate

posterior distribution as

𝜺 = 𝜽map +𝚲−1/2𝜺0 , (4.2)

where 𝚲 = ∇2

𝜽 log 𝑝(𝜽 | 𝒚). In Equation 4.1, the square root of a matrix

yields another matrix which, when multiplied by itself, is equal to the

original matrix. However, since an isotropic Gaussian distribution is

invariant to rotation, in this special case, we just need to obtain a matrix

which returns the original matrix up to a rotation.
1

We thus need to find

a method which computes the inverse square root of the full 𝐷 × 𝐷
posterior precision matrix up to a rotation, where 𝐷 is the number of

model parameters.

Some methods exist which compute the inverse square root of a ma-

trix up to a rotation, such as the Cholesky decomposition. However,

these methods are not suitable for large matrices, as they require the

instantiation of the full precision matrix, which is not feasible for large

matrices. There are also methods which can compute the inverse square

root of a low-rank matrix that is constructed as the inner product of

two rectangular matrices by performing the inverse square root on the
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outer product (which is low-dimensional for low-rank problems), such

as the Woodbury matrix identity. However, the precision matrix we are

interested in is not itself low-rank but a sum of low-rank matrices, and

thus this method is not suitable for our problem. This is discussed in

more detail in Sections 2.3 and 4.3.

Furthermore, methods which do not require computation of the square

root of the covariance matrix typically attempt to exploit properties such

as a block structure or sparsity of the covariance matrix [43]. However,

we do not have a good understanding of the structure of the Laplace

covariance matrix, and thus these methods are not suitable for our

problem. When sampling from high-dimensional Gaussian distributions,

it is common to use Markov chain Monte Carlo (MCMC) sampling

methods such as Gibbs sampling [43]. However, these methods are tricky

to tune and tend to converge very slowly for high-dimensional problems.

As such, we do not use these methods for sampling from the Laplace

approximation, and instead sample using the reparametrisation trick.

For this, we need a method to compute the inverse square root using

only matrix-vector products.

4.2 Contour Integral Quadrature

Pleiss et al. [44] propose one such method. Contour integral quadrature

(CIQ) attempts to solve the problem of computing the inverse square

root of a matrix, up to a rotation, by approximating the expression

𝑓 (𝑲)𝜺0 = 𝑲−1/2𝜺0 where 𝑲 is a positive semi-definite matrix using

Cauchy’s integral formula. To approximate this integral, it exploits the

Lanczos algorithm, Gaussian quadrature, and the msMINRES algorithm,

methods which only require the computation of matrix-vector products

𝑲𝒗. There are then essentially three steps to CIQ, namely:

1. Perform the Lanczos algorithm to compute a lower bound on

the maximum eigenvalue and an upper bound on the minimum

eigenvalue of 𝑲.

2. Sample 𝑄 quadrature points from a complex-plane circle to ap-

proximate the contour integral from Cauchy’s integral formula,

using these quadrature points to create 𝑄 shifted linear systems.

3. Solve these 𝑄 shifted systems using the msMINRES algorithm.

Algorithm 1: Contour Integral Quad (CIQ)

Input :𝑲 ≻ 0, 𝒃, 𝑷 ≻ 0, 𝐽 > 0, 𝑄 > 0

Output : 𝒔 = 𝑲−1/2𝑏
_, 𝜶, 𝜷← CG(𝑲 , 𝒃,𝑷 , 𝐽);
𝑴Lanczos ← TriDiag(𝜶, 𝜷);
𝜆𝑴 ← 𝜆(𝑴Lanczos);
𝜆min ← min𝜆𝑴 ;

𝜆max ← max𝜆𝑴 ;

𝑤1 , . . . , 𝑤𝑄 , 𝑡1 , . . . , 𝑡𝑄 ← Quadrature(𝜆min ,𝜆max , 𝑄);
𝒄1 , . . . , 𝒄𝑄 ← msMINRES(𝑲 , 𝒃, 𝑡𝑞 ,𝑷 , 𝐽) ; /*

(
𝑡𝑞𝑰 + 𝑲

)−1 𝒃. */

𝒔 ← ∑𝑄
𝑞=1

𝑤𝑞𝒄𝑞 ;
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The inverse square root function is holo-

morphic for all positive definite real ma-

trices.

Re

Im

𝜏𝜆min , . . . ,𝜆max

𝜆(𝑲) Γ

Figure 4.1: Integration circle Γ contained

within the domain of 𝑓 as defined ac-

cording to the Cauchy integral formula.

If a real-valued matrix is symmetric, its

eigenvalues are real. In our case, 𝑲 will

be the precision matrix obtained from

the Laplace approximation.

2: Krylov subspace methods are a class

of iterative methods which estimate cer-

tain properties (e.g., the rank, eigenval-

ues) of a matrix 𝑲 with a Krylov sub-

space 𝒦𝑗(𝑲 , 𝒗) for some vector 𝒗. This

subspace is spanned by the set of im-

ages of 𝒗 under the first 𝑗 powers of 𝑲,

𝒦𝑗(𝑲 , 𝒗) = span{𝒗 ,𝑲𝒗 , . . . ,𝑲 𝑗−1𝒗}.

Re

Im

𝜆min
𝜆max

Figure 4.2: The shifts 𝜏1 , . . . , 𝜏𝑄 are sam-

pled from a circle with its centre on the

real axis which intersects the real axis at

the points 𝜆min and 𝜆max. Since we use

Jacobi elliptic functions, we over-sample

quadrature points that are closer to the

minimum eigenvalue 𝜆min.

Since this procedure (see Algorithm 1) computes the approximate inverse

square root product 𝑲 by 𝜺0 up to a rotation, i.e.,

𝑲−1/2𝜺0 , (4.3)

it is then also trivial to compute the square root product by multiplying

𝑲 onto this vector, as per

𝑲1/2𝜺0 = 𝑲 · 𝑲−1/2𝜺0︸  ︷︷  ︸
Equation 4.3

. (4.4)

The first step of CIQ invokes Cauchy’s integral formula. Cauchy’s integral

formula is a central theorem in complex analysis which states that, for a

holomorphic function 𝑓 , there exists a closed contour Γ in the complex

plane (see Figure 4.1) which encloses the eigenvalues of 𝑲 such that 𝑓 (𝑲)
can be approximated as

𝑓 (𝑲) = 1

2𝜋𝑖

∮
Γ

𝑓 (𝜏) (𝜏𝑰 − 𝑲)−1 𝑑𝜏, (4.5)

where

∮
Γ

is the contour integral along the contour Γ parametrised in the

complex variable 𝜏. Since, in our case, the eigenvalues of 𝑲 will all be

real-valued, a circle centred on the real axis which encloses the minimum

and maximum eigenvalues of 𝑲 will suffice. To estimate these values, we

can use the Lanczos algorithm, a Krylov subspace method which adapts

the power iteration method, to compute a lower bound on the maximum

eigenvalue and an upper bound on the minimum eigenvalue of 𝑲.
2

We then apply Cauchy’s integral formula to 𝑓 (𝑲) = 𝑲−1/2
, apply a

change of variable, and then approximate this contour integral using the

quadrature rule with 𝑄 quadrature points (see Figure 4.2), as per

𝑲−1/2 =
1

2𝜋𝑖

∮
Γ

𝜏−1/2 (𝜏𝑰 − 𝑲)−1 𝑑𝜏

≈ 1

2𝜋𝑖

𝑄∑
𝑞=1

�̃�𝑞𝜏
−1/2
𝑞

(
𝜏𝑞𝑰 − 𝑲

)−1

,

(4.6)

where we have the sampled quadrature points 𝜏1 , . . . , 𝜏𝑄 ∈ Γ and the

quadrature weights �̃�1 , . . . , �̃�𝑄 ∈ ℝ. Since we will be sampling a fixed

number of quadrature points from the circle, the closer the contour is to

the singular points (i.e., the eigenvalues), the better the approximation to

the integral will be.

We could sample these quadrature points from the circle uniformly,

which corresponds to the regular trapezoid quadrature rule. However,

the convergence for this quadrature is linear with regard to the condition

number of 𝑲 [44, 45]. Since the precision matrix (which will be computed

from the Laplace approximation as the GGN matrix) can often have a

low rank and poor conditioning, uniform sampling would then require

a very large number of quadrature points 𝑄 and would therefore be

inadequate [44].

Since our GGN precision matrix 𝚲 =
∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 is often low-rank, we

would instead prefer to oversample quadrature points which lie close to

the minimum eigenvalue. This is accomplished by applying a change of
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3: This is because the circle with its cen-

tre on the 𝑥-axis is symmetric with re-

spect to said 𝑥-axis.

With this redefinition, both 𝑤𝑞 > 0 and

𝑡𝑞 > 0. This then means that

(
𝑡𝑞 𝑰 + 𝑲

)
is

positive definite.

0.0 0.5 1.0
m

2

3

SciPy
JAX

Figure 4.3: Comparison of SciPy and JAX

ellipk implementations. For values for

which the complete elliptic integral𝒦(𝑝)
is well-defined, both implementations

yield the same results. Furthermore, due

to its static nature, JAX implementation is

compatible with just-in-time compilation.

4: If 𝑝 > 1, then what we compute is

instead the identity𝒦(𝑝) = 𝒦(1/𝑝)/√𝑝.

variable from 𝜏 to 𝜎 = 𝜏1/2
and sampling the quadrature points from 𝜎.

To account for this change of variable, we reformulate Equation 4.6 as

𝑲−1/2 =
1

2𝜋𝑖

∮
Γ

𝜏−1/2 (𝜏𝑰 − 𝑲)−1 𝑑𝜏

=
1

𝜋𝑖

∮
Γ𝜎

(
𝜎2𝑰 − 𝑲

)−1

𝑑𝜎

≈ 1

𝜋𝑖

𝑄∑
𝑞=1

�̃�𝑞

(
𝜎2

𝑞𝑰 − 𝑲
)−1

.

(4.7)

We can now adapt this equation to allow for computation using only

matrix-vector products. From here, the inverse square root vector product

is given by

𝑲−1/2𝒗 ≈ 1

𝜋𝑖

𝑄∑
𝑞=1

�̃�𝑞

(
𝜎2

𝑞𝑰 − 𝑲
)−1

𝒗︸           ︷︷           ︸
𝑄 system solves

. (4.8)

We can then solve the 𝑄 systems of equations to obtain the solutions

𝒄𝑞 =
(
𝜏𝑞𝑰 − 𝑲

)−1 𝒗 for 𝑞 ∈ 1, . . . , 𝑄.

Since the integrand is symmetric with respect to the real axis, only the

imaginary component of Γ𝜎 is required.
3

Since 𝜎 is then imaginary (its

real part is zero), 𝜏 B 𝜎2
is real such that 𝜏 = − Im(𝜎)2. As such, since

Im(𝜎)2 must be positive, 𝜏 must then be real-valued and negative. In

practice, we incorporate the 1/(𝜋𝑖) term into the quadrature weights and,

since �̃�𝑞 also happens to be real-valued and negative, we can redefine

the quadrature weights 𝑤𝑞 = −�̃�𝑞 and the quadrature points 𝑡𝑞 = −𝜎2

𝑞

for simplicity. This yields the quadrature rule result 𝑲−1/2𝒗 ≈ ∑𝑄
𝑞=1

𝑤𝑞𝒄𝑞 ,

where 𝒄𝑞 = (𝑡𝑞𝑰 + 𝑲)−1
.

This change of variables from 𝜏 to 𝜎 yields a set of quadrature weights

𝑤1 , . . . , 𝑤𝑄 given by

𝑤𝑞 =
2

√
𝜆min

𝜋𝑄
𝒦 ′(𝑘) · cn(𝑖𝑢𝑞𝒦 ′(𝑘) | 𝑘) · dn(𝑖𝑢𝑞𝒦 ′(𝑘) | 𝑘), (4.9)

and a set of quadrature points (shifts) given by

𝜎2

𝑞 = 𝜆min · sn(𝑖𝑢𝑞𝒦 ′(𝑘) | 𝑘)2 , (4.10)

where sn, cn, and dn are the Jacobi elliptic functions and 𝒦 ′(𝑘) is the

complete elliptic integral, such that 𝒦 ′(𝑘) = 𝒦(𝑘′) = 𝒦(
√

1 − 𝑘2). The

complete elliptic integral of the first kind is given by

𝒦(𝑝) =
∫ 𝜋/2

0

(
1 − 𝑚 sin(𝑡)2

)−1/2
𝑑𝑡, (4.11)

where 𝑝 = 1 − 𝑚, and is defined in the domain 0 < 𝑝 ≤ 1.
4

This integral

is approximated by

𝒦(𝑝) ≈ 𝑃(𝑝) − log(𝑝)𝑄(𝑝), (4.12)

where 𝑃 and 𝑄 are tenth-order polynomials. Additionally, we need

to compute the Jacobian elliptic functions sn(𝑢 | 𝑚), cn(𝑢 | 𝑚), and
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Figure 4.4: Comparison of SciPy and

JAX ellipj implementations. For val-

ues for which the functions are well-

defined, both implementations yield the

same results. Plotted are sn(𝑢 | 𝑚 = 0.7),
cn(𝑢 | 𝑚 = 0.7), and dn(𝑢 | 𝑚 = 0.7).
Furthermore, due to its static nature, JAX

implementation is compatible with just-
in-time compilation.

Algorithm 2: Quadrature

Input :𝜆min, 𝜆max, 𝑄 > 0

Output :𝑤𝑞 , 𝑡𝑞 | 𝑞 ∈
1, . . . , 𝑄

𝑘2 ← 𝜆min/𝜆max;

𝑘′2 ←
√

1 − 𝑘2
;

𝐾′←𝒦(𝑘′2);
for 𝑞 ← 1 to 𝑄 do

𝑢𝑞 ← (𝑞 − 1/2)/𝑄;

sn𝑞 ← sn(𝑢𝑞𝐾′ | 𝑘′2);
cn𝑞 ← cn(𝑢𝑞𝐾′ | 𝑘′2);
dn𝑞 ← dn(𝑢𝑞𝐾′ | 𝑘′2);
sn𝑞 ← 𝑖(sn𝑞/cn𝑞);
dn𝑞 ← (dn𝑞/cn𝑞);
cn𝑞 ← (1/cn𝑞);
𝑤𝑞 ← 𝜆1/2

min
𝐾′ cn𝑞 dn𝑞 ;

𝑤𝑞 ← 2𝑤𝑞/(𝜋𝑄);
𝑡𝑞 ← −𝜆min sn

2

𝑞 ;

dn(𝑢 | 𝑚). To compute these values, we first calculate the elliptic modulus

𝑘 = 𝜅(𝑲)−1/2
(where 𝜅(𝑲) denotes the condition number of 𝑲) and

𝑢𝑞 = (𝑞−1/2)/𝑄. These functions are not implemented in JAX, and SciPy

uses the Cephes numerical library in C to compute them. Because of this,

we ported the Cephes Jacobi elliptical functions to JAX, and Figures 4.3

and 4.4 show the functions evaluated for the two implementations. Our

static JAX implementation allows for efficient just-in-time compilation,

which is not possible with the SciPy implementation. We can thereby now

compute the quadrature weights and shifts as described in Algorithm 2.

The last step involves solving the𝑄 linear systems defined in Equation 4.8

to determine 𝒄𝑞 . As mentioned above, this is done by using msMINRES,

an algorithm for solving linear systems of the form (𝑲+ 𝑡𝑞𝑰)𝒄𝑞 = 𝒃 where

𝑲 is symmetric. Like other Krylov methods, msMINRES computes the

solutions to the linear systems by constructing a Krylov subspace𝒦𝑞 of

𝑲 + 𝑡𝑞𝑰 and then iteratively minimises the norm of the residual in 𝒦𝑞 .
While msMINRES only requires that the matrices 𝑲 + 𝑡𝑞𝑰 be symmetric,

and not necessarily also positive definite (since the shifts 𝑡𝑞 are positive

and 𝑲 is positive semidefinite), the sum is also positive definite. However,

the CIQ implementation from Pleiss et al. [44] uses msMINRES, and

we follow their implementation. There is also evidence suggesting that

msMINRES converges faster than, for example, the conjugate gradient

method (CG) [46], a Krylov method that requires the matrices to be

positive definite.

Since the Lanczos algorithm only requires the matrix-vector product

𝑲𝒗 with a random vector 𝒗 to estimate a bound on the eigenvalues, we

can use the same bound for all 𝑄 linear systems. As such, the computa-

tional bottleneck of the contour integral quadrature is performing the

msMINRES for the shifted systems. Additionally, since msMINRES is

an iterative Krylov method, its convergence bound is sensitive to the

conditioning of the linear systems, i.e., the conditioning of 𝑲. To mitigate

the effect of ill conditioning, we use a preconditioner 𝑷 such that 𝑷−1𝑲
is well-conditioned.

4.3 Preconditioning

One drawback of CIQ is that the accuracy its of approximation of 𝚲−1/2𝜺0

suffers when the precision matrix 𝚲 is poorly conditioned. In the case of
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the Laplace approximation, the precision matrix is given by

𝚲 =

𝑁∑
𝑖

𝑱T
𝑖 𝑯𝑖𝑱𝑖 + 𝛼𝑰 , (4.13)

𝜽 ∼ 𝒩(𝜽map ,𝚲−1), (4.14)

where 𝑁 is the number of observations in your dataset.

For preconditioning, we need to find a preconditioner matrix 𝑷 and its

inverse 𝑷−1
such that the matrix 𝑷−1𝚲 is well-conditioned. This is done

by choosing 𝑷 such that the two matrices are “similar”, i.e., they have

close eigenvalues and eigenvectors. In this way, the preconditioner acts

as an initial best guess of the value to be computed. We are thus seeking

a preconditioner 𝑷 such that

𝑷−1𝑨 ≈ 𝑰 ⇒ 𝑷 ≈ 𝑨, (4.15)

𝑷−1𝚲 = 𝑷−1
(∑𝑁

𝑖
𝑱T
𝑖
𝑯𝑱𝑖 + 𝛼𝑰

)
, (4.16)

where 𝚲 is the posterior precision matrix given by Equation 4.13 to

improve convergence of the msMINRES and Lanczos algorithms. The

eigenvalues of our GGN approximation are thus given by

𝜆
(∑𝑁

𝑖
𝑱T
𝑖
𝑯𝑱𝑖 + 𝛼𝑰

)
=

{
𝑠1 , . . . , 𝑠𝐾︸     ︷︷     ︸
𝐾≤𝑁 ·𝑂

, 𝛼, . . . , 𝛼︸   ︷︷   ︸
𝐷−𝐾

}
, (4.17)

where {𝑠1 , . . . , 𝑠𝐾}, 𝐾 ≤ 𝑁 · 𝑂 are the non-zero eigenvalues of the rank-

𝐾 matrix

∑𝑁
𝑖
𝑱T
𝑖
𝑯𝑖𝑱𝑖 . If a preconditioner approximates all eigenvalues

and eigenvectors of a matrix, then the preconditioner and the matrix

are equal and the preconditioner is exact. However, we often do not

have a preconditioner which is exact, but rather an approximation of

the matrix. In this case, there is a tradeoff between the accuracy of the

preconditioner and its computational cost. Furthermore, the inverse of

the preconditioner is required for preconditioning, which is often not

available. To approximate the inverse of the preconditioner, we can use

the conjugate gradient method, though this method is then sensitive to

the condition number of the preconditioner; and if the original matrix

𝚲 is ill-conditioned, then a good preconditioner will also tend to be

ill-conditioned.

As such, the condition number of our preconditioner also becomes an

issue, since we have two conflicting objectives: to have a preconditioner

which is as similar to 𝚲 as possible and to have a preconditioner which

we can invert easily. The first point lends itself toward the use of precon-

ditioners with a similar condition number as 𝚲. However, to invert an

arbitrary positive semi-definite matrix, we will often resort to using the

conjugate gradient method which is sentitive to the condition number

of the preconditioner. Thus, there is an intrinsic balance to be struck

between a preconditioner which is very similar to𝚲 (but whose condition

number is problematic) and a preconditioner which is less similar to 𝚲
(and will therefore not improve the conditioning of the problem).

Let us consider the toy example of a preconditioner which we can guar-

antee to have the same eigenvectors as 𝚲 and whose eigenvalues we can

freely choose. To do so, one could hypothetically attempt to compute the

eigenvectors of 𝚲 and then use these eigenvectors as the columns of the
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preconditioner. If we have a rank-one preconditioner whose only eigen-

vector is the largest eigenvector of 𝚲, then the eigenvalue corresponding

to this eigenvector becomes one and the second-largest eigenvalue be-

comes the largest (assuming that the second-largest eigenvalue is greater

than one). Thus, in the best-case scenario, you can then eliminate the

largest eigenvalue of 𝚲 by using a rank-one preconditioner. Thus, if

we have a rank-𝐾 preconditioner, then we can eliminate at most the

𝐾 challenging (largest or smallest) eigenvalues of 𝚲 by using a rank-𝐾

preconditioner. The steeper the spectrum of 𝚲, the more effective this

preconditioning will be (however, in this case, 𝚲 will probably also tend

to be worse conditioned). For a preconditioner with a condition number

of 𝜅′, we can at best obtain a preconditioned system with conditioning

𝜅/𝜅′, where 𝜅 is the condition number of 𝚲. This is because we want the

highest eigenvalue of the preconditioner to neutralise (i.e., align with)

the highest eigenvalue of 𝚲, and the same for the lowest eigenvalues.

In CIQ we will, in each iteration, perform one matrix-vector product 𝚲𝒗
and one preconditioner-vector product, as seen in Algorithm 1.As such,

if the preconditioner-vector product is similarly or more expensive to

compute compared to the matrix-vector product, then preconditioning

will significantly slow down the algorithm. However, we usually choose

preconditioners which are relatively easy to compute relative to the

posterior precision itself. Additionally, an effective preconditioner can

significantly improve the convergence speed of CIQ, and this effect can

outweigh the cost of computing the preconditioner. Thus, we will often

choose to use a preconditioner which is not exact, but which is still close

to𝚲 and is cheap to compute. We will now discuss some potential choices

for preconditioners to sample using CIQ.

4.3.1 Fully Linear GGN

One of the simplest preconditioners is similar to the second moment

estimation used in Adam (Subsection 2.1.2). If we calculate the GGN

approximation of the Hessian by linearizing over the whole likelihood

(as described in Subsection 2.3.3), we get

𝑷 = ∇∇T + 𝛼𝑰 (4.18)

𝑷−1 = 𝛽 · ∇∇T + 𝛼−1𝑰 (4.19)

𝛽 =

(
𝛼 ∥∇∥2 + ∥∇∥4

)−1

−
(
𝛼 ∥∇∥2

)−1

, (4.20)

where ∇ is the gradient of the loss with regard to the model parameters.

Since Equation 4.18 is in the form of a diagonal perturbation to a vector

outer product, we have the closed-form inverse given by Equations 4.19

and 4.20. The problem with using this approximation is that the rank of

the outer product is one and this term determines the largest eigenvalue

of the preconditioner. This means that, best-case scenario, we can only

reduce the highest eigenvalue of the Hessian. This occurs when the

gradient corresponds to the direction of the highest precision (this may

not be the case). This would then leave the second-highest eigenvalue

unaffected. We therefore need to find a higher-rank approximation of the

posterior precision.
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5: Empirically, it seems likely that the

eigenvectors of the posterior precision

are relatively similar across different

observations—see Figure 2.1 and Sub-

section 2.3.4.

6: This analysis assumes that the compu-

tation of the GGN-vector product scales

linearly in the number of observations

used in the GGN matrix. Mathemati-

cally speaking, this is a valid assump-

tion, due to the number of elementary

operations that are performed in the algo-

rithm. However, the efficient JAX XLA-

compiled implementation of Jacobian-

vector products can scale differently to

naïve implementations, so the validity of

the assumption is less clear in our case.

4.3.2 Sub-Sampling the Data

We could just choose to calculate the true posterior precision over fewer

observations and invert it using the conjugate gradient method to use it as

a preconditioner. This would have the advantage of being guaranteed to

converge to the true posterior precision as the number of preconditioner

observations increases. The spectrum of this preconditioner would thus be

similar to that of the true posterior precision. Since the lowest eigenvalue

of the posterior precision is the prior precision 𝛼, we can (even with

few preconditioner observations) increase the lowest eigenvalue of the

preconditioned system to be equal to one.

Alternatively, we can estimate the eigenvectors and eigenvalues of

𝑁/𝐵∑𝐵
𝑖
𝐽T
𝑖
𝐽𝑖 , where 𝐵 is the number of preconditioner observations.

This would hopefully have an eigenbasis that is close to that of

∑𝑁
𝑖
𝐽T
𝑖
𝐽𝑖

without needing to calculate the precision matrix over the whole dataset

(we may need to guarantee all classes are represented in 𝑥𝑖 , 𝑖 ∼ ℬ).
5

However, scaling the precondititioner up to the size of the entire dataset

will lead to a preconditioner which is ill-conditioned, making inversion

via conjugate gradient difficult.

As mentioned before, each msMINRES iteration performs one matrix-

vector product and one preconditioner-vector product. However, even

though the preconditioner is constructed in nearly the same way as the

sum of GGN matrices in the posterior precision, the preconditioner is

significantly cheaper to compute. This is because the preconditioner-

vector product will cost 𝐵/𝑁 · 𝑡GGN, where 𝑡GGN is the computational cost

of performing the GGN-vector product.
6

Since we will have 𝑁 ≫ 𝐵, then

the cost of computing the preconditioner will be negligible compared to

that of the GGN-vector product.

4.3.3 Using the Woodbury Matrix Identity

The Woodbury matrix identity [47] is a useful identity for computing

the inverse of a matrix which is the sum of two matrices of which one is

low-rank and the other can easily be inverted. The identity is given by

(𝑨 + 𝑩𝑪𝑫)−1

= 𝑨−1 − 𝑨−1𝑩
(
𝑪−1 + 𝑫𝑨−1𝑩

)−1

𝑫𝑨−1 , (4.21)

where 𝑨 is a𝐷×𝐷 matrix and can easily be inverted, 𝑩 is a𝐷×𝑂 matrix,

𝑪 is a 𝑂 × 𝑂 matrix, and 𝑫 is a 𝑂 × 𝐷 matrix. This identity can be used

to compute the inverse of the GGN matrix with the prior precision as(
𝛼𝑰 + 𝑱T𝑯𝑱

)−1

= 𝛼−1𝑰 − 𝛼−2𝑱T (
𝑯−1 + 𝛼−1𝑱𝑱T)−1

𝑱 , (4.22)

where 𝛼 is the prior precision and 𝑯 ∈ ℝ𝑂×𝑂
and 𝑱 ∈ ℝ𝑂×𝐷

are

the Hessian and Jacobian from Equation 2.20 evaluated at a single

observation.

Here, to exploit the low-rank structure of the preconditioner, we only

compute the GGN matrix over one observation. For this preconditioner

to be effective, we assume that the eigenvectors of the GGN matrix are

approximately constant across the dataset. This may be a reasonable

assumption for many problems, but is not guaranteed to be true.
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However, even if the eigenvectors of the GGN matrix are constant across

the dataset, the eigenvalues of this preconditioner should be large enough

to reduce the condition number of the posterior precision matrix. To

do so, we can scale the outer product 𝑱𝑱T
term by some factor, e.g.,

the number of observations, 𝑁 . Since, by scaling up the outer product

term we are effectively scaling the eigenvalues of 𝑱𝑱T
by a constant, the

condition number of this outer product will remain the same. In this way,

we can increase the maximum eigenvalues of the preconditioner without

increasing the condition number of the outer product 𝑱𝑱T
which we want

to invert using the conjugate gradient method.

Before the Woodbury matrix identity can be used, the Hessian of the

loss with respect to the model outputs 𝑯 must first be inverted. To use

the conjugate gradient method to invert this Hessian, we would have to

perform nested conjugate gradient to also compute the inverse of the outer

product term 𝑯−1 + 𝛼−1𝑱𝑱T
, which could be very expensive, depending

on the number of outputs. For regression tasks where the Hessian is

diagonal (Equation 2.22), this is not a problem. For classification tasks

using the cross-entropy loss, we can compute the inverse of the Hessian

as a diagonal and outer product matrix, so this is also not a problem.

For models with a very large number of outputs, such as autoencoders,

the matrix 𝑯 will be fairly large, and so computing its inverse manually

can become expensive. However, in the case of autoencoders, the loss

is usually the MSE loss, and so has a diagonal Hessian which can be

inverted easily.

Thus, if 𝑯 is positive definite (which is necessary for the Laplace ap-

proximation to be valid) and easy to invert, then it should be possible

to use the Woodbury matrix identity to compute the inverse of this

preconditioner. This preconditioner is fast to compute, but may not be

effective when the eigenvectors of the GGN matrix are not constant

across the dataset. However, due to the effectiveness of the sub-sampled

GGN preconditioner and the assumption of stationary eigenvectors,

we did not end up using this preconditioner. Additionally, this pre-

conditioner cannot assume a higher rank than the number of outputs

𝑂, since adding more observations to the preconditioner will increase

its rank to some unknown value and prevent the application of the

Woodbury matrix identity. Ideally, we would like to be able to find a

preconditioner for which we can choose the rank of the low-rank ap-

proximation 𝑨 ≈ ∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 without simply computing the GGN on a

single observation (𝑱T
𝑖
𝑯𝑖𝑱𝑖 ≈

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖), while still allowing us to apply

the Woodbury matrix identity, unlike in the case of the sub-sampling

preconditioner in Subsection 4.3.2 (

∑𝐵
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖 ≈

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖).

4.3.4 Pivoted Cholesky

The pivoted Cholesky factorisation is a method for computing a low-

rank approximation to the Cholesky decomposition of a matrix [48, 49].

This decomposition has been successfully applied to preconditioning

for kernel matrices in Gaussian processes [50], but not yet to precondi-

tioning for the posterior precision of neural networks using the Laplace

approximation. Given the posterior precision matrix 𝚲 from the Laplace



30 4 Sampling

7: We can also precompute the inverse

(𝑰 + 𝛼−1𝑳𝑳T)−1 ∈ ℝ𝐾×𝐾
, which means

we would only need to store the factorisa-

tion 𝑳 ∈ ℝ𝐾×𝐷
and this inverse𝐾×𝐾ma-

trix, in which case we would just need to

perform one more matrix multiplication

(multiplying 𝑳T
with this 𝐾 × 𝐾 matrix)

in every preconditioner call.

approximation, we can compute the pivoted Cholesky factorisation as

𝚲 =

𝑁∑
𝑖

𝑱T
𝑖 𝑯𝑖𝑱𝑖 + 𝛼𝑰

≈ 𝑳T𝑳 + 𝛼𝑰 ,

(4.23)

where 𝑳 ∈ ℝ𝐾×𝐷
, with 𝐾 being the chosen rank of the pivoted Cholesky

factorisation and 𝐷 being the number of parameters. We can then use

this approximation as a preconditioner by computing its inverse via the

Woodbury matrix identity, similarly to Subsection 4.3.3, as

𝑷 = 𝑳T𝑳 + 𝛼𝑰 , (4.24)

𝑷−1 = 𝛼−1𝑰 − 𝛼−2𝑳T (
𝑰 + 𝛼−1𝑳𝑳T)−1

𝑳. (4.25)

We then obtain the preconditioner-vector and inverse preconditioner-

vector products as in Equation 4.26. The most expensive computation in

the inverse preconditioner is inverting a 𝐾 × 𝐾 matrix, where 𝐾 is the

rank of our pivoted Cholesky factorisation (which we choose).

𝑷𝒗 = 𝑳T(𝑳𝒗) + 𝛼𝒗 , (4.26)

𝑷−1𝒗 = 𝛼−1𝒗 − 𝛼−2𝑳T(𝑰 + 𝛼−1𝑳𝑳T︸       ︷︷       ︸
𝐾×𝐾

)−1(𝑳𝒗). (4.27)

Here it is possible to precompute the inverse factorised product given

by 𝑳T(𝑰 + 𝛼−1𝑳𝑳T)−1 ∈ ℝ𝐷×𝐾
, meaning that we only need to perform

two matrix multiplications for both the preconditioner- and inverse

preconditioner-vector products. This would then require storing the fac-

torisation 𝑳 ∈ ℝ𝐾×𝐷
and the inverse factorised product ℝ𝐷×𝐾

matrix.
7

As explained in Subsection 2.3.4, as we sum over multiple low-rank GGN

matrices, we will likely find that the minimum non-zero eigenvalue gets

progressively smaller compared to the largest. The condition number will

therefore get progressively worse. The preconditioning of

∑𝑁
𝑖=1

𝑱T
𝑖
𝑯𝑖𝑱𝑖

(which should be low-rank) will progressively become less low-rank and

its condition number will progressively become higher.

Regarding the non-zero eigenvalues and eigenvectors, we consider a

best-case scenario. Assume that the pivoted Cholesky factorisation finds

the 𝐾 largest eigenvectors of the precision matrix. If the eigenspectrum

of this factorisation is steep enough, then the largest eigenvalue 𝑠1 will

be significantly larger than the smallest eigenvalue 𝑠𝐾 (i.e., there will be

a steep drop-off from the largest to the smallest non-zero eigenvalue).

Since the eigenvectors of each per-observation term 𝑱T
𝑖
𝑯𝑖𝑱𝑖 will not be

the same, when we sum over them, the eigenvalues of the sum will not

be the sum of the eigenvalues of the individual Hessians. However, some

of the eigenvectors may be close to each other, and so the spectrum of

the GGN sum may be approximately the sum of the GGN eigenvalues.

Nevertheless, the rank of the total Hessian will increase with the number

of observations and so the number of non-zero eigenvalues consequently

increase as well. These eigenvalues will be smaller than the summed

eigenvalues (because the eigenvectors may not be contained in the same

subspace), but they will be larger than the smallest eigenvalue of the

per-observation Hessian. This will then lead to a steeper spectrum and

a larger condition number of the total Hessian. Thus, when the batch
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size 𝐵 is large, the condition number of the sum of GGN Hessians

will increase and the preconditioner will become less effective. How

much the condition number increases with the batch size depends on

the eigenspectrum of the per-observation Hessians (i.e., how close the

eigenvectors are to each other).

If we want to use the pivoted Cholesky decomposition to approximate∑𝐵
𝑖
𝑱T
𝑖
𝑯𝑖𝑱𝑖 , we are largely trying to approximate the higher eigenvectors

of the sum. In order for this to be the case, we will want to oversample

vectors from this matrix which correspond to the largest eigenvalues.

A common approach to sampling the largest eigenvalues is to sample

vectors with probability proportional to the diagonal value [48]. However,

it is not possible to generally and efficiently determine the diagonal of

a matrix via matrix-vector products. Often, it is necessary to multiply

a vector of zeros with a value of one at the index at which to find the

diagonal. This operation needs to be repeated as many times as there

are elements in the diagonal with no shared computation between each

element, which is very expensive. Alternatively, we can approximate the

diagonal of the GGN matrix as the element-wise product of the gradient

with itself, similarly to the preconditioner described in Subsection 4.3.1

and the GGN approximation computed in Equation 2.25, though this

may not be the most accurate approximation.

In conclusion, to find the optimal parameters for the pivoted Cholesky

preconditioner (the number of observations 𝐵 and the rank of the pivoted

Cholesky factorisation 𝐾), there are some rules of thumb to consider.

Notably, the quality of the preconditioner depends largely on the ease of

inverting the 𝑰 + 𝛼−1𝑳𝑳T
matrix, which depends on its condition number.

In practice, increasing the rank of the pivoted Cholesky factorisation will

increase the condition number of this matrix, since we are approximating

more of the largest eigenvectors and so we will capture progressively

smaller eigenvalues.

We have found that it is most effective to keep 𝐾 low, such that the

𝐾 × 𝐾 outer product of the pivoted Cholesky factorisation matrix 𝐿

approximates few enough of the largest eigenvectors that the eigenvalue

of the largest is close to that of the smallest (meaning this outer product is

well-conditioned). We thus need to choose 𝐾 such that it is large enough

to approximate enough large eigenvectors and small enough to ensure

the condition number of the outer product is low. Furthermore, you want

enough observations 𝐵 to be included in the preconditioner such that it

is possible to accurately approximate the eigenvectors of the problem—it

may be optimal to use the whole dataset, though this may worsen the

conditioning of the outer product.

Furthermore, the pivoted Cholesky decomposition is not implemented in

JAX. Since the pivoted Cholesky decomposition involves incrementally

adding columns to the factorisation, and JAX is not friendly towards

mutable variables, this preconditioner is not straightforward to imple-

ment. Additionally, the pivoted Cholesky decomposition traditionally

uses the diagonal of the matrix to determine which columns to add to

the factorisation, which is difficult without instantiating the matrix, so

we would need to approximate the diagonal of the GGN matrix.
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Table 4.1: Comparison of various approximations of the likelihood contribution

∑𝑁
𝑖
𝑱T
𝑖
𝑯𝑖 𝑱𝑖 to the Laplace posterior precision for use in

preconditioning. We compare the rank of the approximation, the speed of computing preconditioner-vector products, the closeness of

the approximation, and the method used for inverting the preconditioner.

Rank Speed Closeness Inversion

∇T∇ 1 Very fast Bad Closed-form∑
𝑖 𝑱T
𝑖
𝑯𝑖𝑱𝑖 Flexible, implicit Slow Arbitrarily close Conjugate Gradient

𝑱T𝑯𝑱 𝑂 Fast Okay Woodbury

𝑳T𝑳 Flexible, explicit Fast (precomputable) Good Woodbury

4.3.5 Other Preconditioners

The randomly pivoted Cholesky [51] preconditioner is simple and inex-

pensive variant of the partial Cholesky decomposition family of algo-

rithms. Similarly to the pivoted Cholesky preconditioner, the randomly

pivoted Cholesky preconditioner requires the diagonal of the GGN ma-

trix in order for the decomposition to be close to the GGN. We can thus

approximate this term as we do in the pivoted Cholesky preconditioner

(see Subsection 4.3.4). Early tests of the randomly pivoted Cholesky

preconditioner were not successful, and so it was not pursued further.

Additionally, we considered potential preconditioners to be computed as

traditional approximations of the posterior precision, like the diagonal

approximation or the Kronecker factorisation. These methods have been

shown to be relatively effective approximations of the posterior precision

in the context of Bayesian neural networks [8], and so they may contain

enough information about the full posterior precision to be effective

preconditioners.

However, due to the speed, effectiveness, and theoretical properties of

other preconditioners proposed in this section, these methods were not

used. Overall, both the sub-sampled preconditioner and the pivoted

Cholesky preconditioners were found to be effective under the correct

settings. However, the pivoted Cholesky preconditioner is not easy to

implement in JAX and was more difficult to tune than the sub-sampled

preconditioner. The sub-sampled preconditioner is thus the preferred

preconditioner in this project. We provide a high-level comparison of the

various preconditioners we have presented in this chapter in Table 4.1.

4.4 Sampling Evaluation

As we have explained, sampling through CIQ is sensitive to the condition

number of the posterior precision. As such, we need a technique for

evaluating the quality of the samples drawn from the approximate poste-

rior to determine if sampling occurred correctly. This means evaluating

whether the samples are drawn from a normal distribution with the

correct mean and precision.

What we would like to fundamentally test is whether the CIQ algorithm

converged correctly and thus whether the samples were generated

successfully. However, for cases when sampling fails to converge, this

is typically caused by ill-conditioning of the posterior precision matrix.

Since we only have access to the precision matrix and computing the
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covariance involves inverting the precision matrix using, for example, the

conjugate gradient method (which is itself sensitive to ill-conditioning),

we cannot directly evaluate the covariance of the samples. Instead, we

require a method to evaluate the quality of the samples without access to

the covariance matrix, which is what we will discuss in the next section.

4.4.1 The Chi-Squared Distribution

As per the definition of the chi-squared distribution, for 𝐷-dimensional

standard normal samples 𝜺0, the sum of square deviations from the mean

is chi-squared distributed with 𝐷 degrees of freedom, as per

𝜺0

T𝜺0 ∼ 𝜒2(𝐷). (4.28)

Samples 𝜺 which are normally distributed but do not have a mean of

zero and a standard deviation of one can be standardised and their

sum of square deviations be calculated by computing their squared

Mahalanobis distances, which will be chi-squared distributed with 𝐷

degrees of freedom, as per

𝒅 =

√
(𝜺 − 𝝁)T𝚲(𝜺 − 𝝁)

⇒ 𝒅T𝒅 ∼ 𝜒2(𝐷).
(4.29)

This has the advantage of only requiring the computation of the product

of the precision matrix 𝚲 with a vector, which we can compute efficiently,

as it does not require instantiation of the matrix. For the Laplace ap-

proximation, this can easily be computed as 𝚲 = −∇2

𝜽 log 𝑝(𝜽 | 𝒚). Since

this precision matrix can be computed exactly, this calculation can be

performed to evaluate the whether a set of samples 𝜺 are drawn from a dis-

tribution𝒩(𝝁,𝚲−1) while only implicitly accessing this precision matrix

in the evaluation via matrix-vector products. To do so, we can compute

the squared Mahalanobis distance of each sample 𝜺𝑖 from the mean 𝝁 and

compare it to the chi-squared distribution with 𝐷 degrees of freedom.

We do this by comparing the histogram of these squared Mahalanobis

distances to the appropriate PDF and by visualising the sample empirical

percentiles against the theoretical percentiles in a quantile-quantile plot.

As such, this method can be used to evaluate whether the approximate

normal samples obtained from CIQ are correctly distributed. However,

this method does not provide a quantitative measure of the quality of

the samples. In order to run experiments using the Laplace approxima-

tion without manually checking the plots of every set of samples we

generate, we also need a method to evaluate the quality of the samples

quantitatively. Our current methods do not provide this, and so we need

to evaluate the quality of the samples in a different way.

The Kolmogorov-Smirnov test is a non-parametric test for comparing

two continuous distributions. It is a test of whether two samples are

drawn from the same distribution. Since the chi-squared distribution is

continuous, we can use the Kolmogorov-Smirnov test to compare the

chi-squared distribution with𝐷 degrees of freedom to the squared Maha-

lanobis distances of the samples. This test is performed by computing the

Kolmogorov-Smirnov statistic, which is the maximum difference between

the empirical and theoretical CDFs. The null hypothesis of the test is
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that the samples are drawn from the same distribution, and so the test is

rejected if the Kolmogorov-Smirnov statistic is greater than the critical

value for the test. This means that sample normality is rejected if the

p-value of the test is less than the significance level of the test. However,

this test is very sensitive to the number of samples used to compute the

statistic, and so a large number of samples will lead to a very low p-value

even if the samples are drawn from the same distribution. Since we can

sample an arbitrarily large number of samples from the approximate

posterior, this may lead to low p-values even when sampling succeeds.



1: This allows us to compare our imple-

mentation of the GGN-vector product to

the Hessian-vector product. While this

test is not perfect (since it only holds for

linear functions), it is a good sanity check.

We find that the two are indeed the same

in these experiments.

3s
HVP
GVP
Manual

50ms

150ms

1.5s

2.0s HVP Inv.
GVP Inv.
Manual Inv.

103 106 109

Number of parameters

200ms

300ms

400ms

Figure 5.1: Top: comparison of the perfor-

mance for manual Hessian-vector prod-

ucts, HVPs, and GVPs for increasing

numbers of parameters 𝐷. Bottom: com-

parison of the performance of inverse-

vector products for the same methods.

Implicit inverse is performed via con-

jugate gradient for HVP and GVP. We

can see that the explicit inversion fails

for 𝐷 > 10𝑘 and that explicit Hessian-

vector products fail for 𝐷 > 1𝑀 (and,

for 𝐷 = 1𝑀, the manual product is ex-

tremely slow). Implicit products, how-

ever, can be computed so long as the

output vector fits in memory, while im-

plicit inversion fails for 𝐷 = 1𝐵. Notice

the broken axis and thus, in particular,

the performance difference between the

explicit and implicit inversion methods.
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5.1 Hessian-Vector Products

In this project, we propose performing the Laplace approximation by

only storing the computational graph for the implicit Hessian-vector

product, thereby avoiding the explicit computation and storage of the

quadratically-scaling Hessian matrix. How significant of an effect does

this have, though? To test this, we perform Hessian-vector products

𝑲𝒗 and inverse Hessian-vector products 𝑲−1𝒗, where 𝑲 ∈ ℝ𝑁×𝑁
, and

compare their performance. Specifically, we apply a manual instantiation

and inverse (or solve) of the Hessian matrix with a random vector 𝒗
and compare this to the performance of the JAX efficient Hessian-vector

products (which we will call HVPs) and GGN-vector products (which

we will call GVPs). In reality, JAX computes these products implicitly

by performing two Jacobian-vector products (for the HVP) and one

Jacobian-vector product (for the GVP). To compare performance with

regard to memory usage and runtime, we perform these products for an

increasing problem dimensionality 𝑁 ∈ {10
1 , 10

2 , . . . , 10
9}.

It is difficult to benchmark memory consumption in JAX, since the just-

in-time compiler optimises computations using XLA. This then prevents

us from stopping the program and measuring memory usage at a single

point in time, as many computations will be performed at once. Ideally,

it would be possible to measure the peak memory usage by JAX during

the running of the program. This is not trivial, though, as it would

require querying the memory usage from the GPU asynchronously at

a very high frequency and “hope” the peak usage point was captured.

Instead, we simply measure the value of 𝑁 at which the program fails

from an out-of-memory error instead, as a proxy for memory usage. This

experiment should then answer two questions:

1. How much larger problems can we solve if we do not need to

instantiate the whole Hessian?

2. How much faster is it to compute the GVP versus, say, the HVP or

the explicit Hessian-vector product?

To perform this experiment, we define the the loss function composition

ℒ(𝒙) ≡ (𝑔 ◦ 𝑓 )(𝒙) B ∑𝑁
𝑖=1
(2𝑥𝑖 +0.5)2 as 𝑓 (𝒙) B 2𝒙+0.5, 𝑔(𝒙) B ∑𝑁

𝑖=1
𝑥2

𝑖
.

This is equivalent to the sum-of-square-error loss 𝑔 for a simple linear

model 𝑓 . Since 𝑓 (𝑥) is a linear function, the GGN matrix will exactly

equal the actual Hessian.
1

We then initialise 𝒙 to a random vector and

compute the matrix-vector product 𝑲𝒗 where 𝒗 is a random vector using

three Hessian-vector products: the JAX efficient HVP and GVP functions

and a manual Hessian instantiation and multiplication. We then measure

the total wall-clock time for computing this Hessian product by 𝒗.

Furthermore, since we are looking to compute some variation of the

matrix inverse of 𝑲, and inverting a high-dimensional matrix can also be

very expensive, we also compare the performance of the inverse Hessian-

vector product𝑲−1𝒗. To compute the inverse for the efficient implicit HVP
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Figure 5.2: Comparison of the speedup

from computation of the Hessian-vector

product (HVP) versus the GGN-vector

product (GVP) (top) and inverse HVP

versus inverse GVP using the conjugate

gradient method (bottom). Speedup is

calculated as the ratio of the wall-clock

time of the HVP to the GVP. We can see

that the two methods have the same time

complexity (up to a linear factor).
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Figure 5.3: Ablation over quadrature

points for MNIST. We can see that sam-

pling fails unambiguously for𝑄 < 5 and

succeeds for 𝑄 ≥ 10.

and GVP functions, we use the conjugate gradient method, which only

requires the use of matrix-vector multiplications to compute this inverse

product. To compute the explicit inverse, we use the jax.scipy.linalg

package, which performs the inverse using LAPACK (on CPU) or cu-

SOLVER (on GPU). These experiments were run on a single NVIDIA

A100 GPU.

The results for this experiment have been visualised in Figure 5.1. Ad-

ditionally, the raw results for this experiment have been summarised

in the appendix, in Table 1. We can see that the explicit Hessian-vector

product fails for 𝐷 > 1𝑀 parameters, while the explicit inversion fails

for 𝐷 > 10𝑘 parameters. This is not surprising, as the explicit Hessian

is a 𝐷 × 𝐷 matrix, and so the memory requirements for this matrix

depend on the 𝐷2
parameters. Additionally, while the wall clock time

for computing the Hessian-vector product is sublinear with 𝐷, explicit

Hessian-vector product is over an order of magnitude slower for 𝐷 = 1M

than for 𝐷 = 100k. This may be due to the explicit Hessian, at this size,

being too large to fit in the cache of the GPU.

The largest number of parameters tested is 1 B. Above 1 B parameters, even

implicit methods fail, although this failure occurs in the instantiation of a

single random vector of that size (so it would fail on this hardware for any

method, since we can not even store the 𝒗 nor the product 𝑲𝒗). Notably,

however, these implicit Hessian-vector product methods allowed for

computation of matrix products for problems three orders of magnitude

larger, and computation of solves for problems four orders of magnitude

larger, than the explicit methods. This is a significant improvement

in scalability, and is a key reason why we use these methods in our

experiments. Additionally the implicit inverse products are significantly

faster than explicit inversion, even for small problems. Performance also

appears identical regardless of whether the explicit inverse is computed

by actual inversion or by solving a system of linear equations.

However, due to the scale of the figure, it is not clear how the performance

of the Hessian-vector product compares to the performance of the GGN-

vector product. We can then plot the speedup from going from the HVP

to the GVP as a function of the number of model parameters. This can be

calculated as the ratio of the wall-clock time of the HVP to the wall-clock

time of the GVP. Thus, larger values suggest greater performance gains

for the GVP, while values closer to one suggest there is no performance

gain. These results can be seen in Figure 5.2. The number of parameters on

the 𝑥-axis are exponentially increasing. We can see that the computation

of the GVP is always faster than the computation of the HVP, and that

the speedup is approximately linear in the number of parameters. This is

in line with what we expected (see Subsection 2.3.3). We can also see a

slight decrease in the speedup as the number of parameters increases

for the Hessian-vector products. However, it is not clear why this is the

case.

5.2 Sampling Ablation

Contour integral quadrature (CIQ) converges to the exact solution for

lim𝑄→∞ 𝒔CIQ

𝑄
= 𝑲−1/2𝒗. However, CIQ is typically close to the exact
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2: Pleiss et al. [44] find that 𝑄 = 20 is

approximately sufficient for most prob-

lems.

Table 5.1: Sampling time and p-values

for Kolmogorov-Smirnov with varying

quadrature points 𝑄 on MNIST with

prior precision 𝛼 = 0.1, for 200 poste-

rior samples. Lower p-value indicates a

higher probability of rejecting normality.

Bold indicates sampling was successful

based on visual inspection of quantile–

quantile plots. Since, for values of𝑄 ≥ 5,

samples appear visually to be multivari-

ate normal, we can conclude that we

should choose a significance threshold

of 0.01 or lower.

𝑄 p-value Time [m]

1 0.0000 10.6

2 0.0000 18.8

3 0.0000 23.4

4 0.0001 23.4

5 0.0284 23.9

10 0.0542 24.4

20 0.0561 24.9

Results for the experiments in this chap-

ter run on CPU are shown in the ap-

pendix, in Figure 1.

solution for low values of 𝑄.
2

We now attempt to determine the number

of quadrature points 𝑄 required to compute an adequate posterior

samples.

We vary 𝑄 ∈ {1, . . . , 20} to determine the number of quadrature points

required to effectively sample from the Laplace approximation. We then

compute the Mahalanobis distance between the samples and the true

posterior mean, and compare this to the chi-squared distribution with 𝐷

degrees of freedom. By comparing the empirical CDF of the Mahalanobis

distances to the theoretical 𝜒2

𝐷
CDF, we can perform the Kolmogorov-

Smirnov test for each value of 𝑄. This p-value is then used to determine

whether the null hypothesis that the samples are multivariate normal

can be rejected based on some significance threshold. Sample evaluation

is explained in more detail in Section 4.4. The results of this experiment

are shown in Table 5.1 and Figure 5.3. Quantile–quantile plots for each

value of 𝑄 are shown in the appendix, in Figure 2. These experiments

were, again, run on a single NVIDIA A100 GPU.

The p-values in Table 5.1 suggest that sampling is successful for 𝑄 ≥ 10

with a significance threshold of 0.05. However, significance testing can

be sensitive to the number of samples used, and, for large numbers

of samples, these tests can excessively reject the null hypothesis. In

our case, the number of samples is generally fixed as a function of

the number of parameters in the model and the amount of memory

available. As such, it is important to select an appropriate significance

threshold for the test based on the number of posterior samples that are

required. Inspection of Figure 2 in the appendix suggests that there is

not a significant difference between using 5, 10, or 20 quadrature points.

Using less than 4 quadrature points, however, results in sampling failure,

while using exactly 4 quadrature points results in a borderline success.

For 200 posterior samples, a more appropriate significance threshold of

0.01 or lower would reject sampling for 𝑄 ≤ 4, since the cases where

sampling fails completely have p-values that are below single floating

point precision (i.e., they are effectively zero).

In taking as much as 20 to 30 minutes to compute 200 posterior samples

for an MNIST model with 15 k parameters, the time required to compute

the samples is not negligible. In practice, it is likely that only a small

number of samples will be obtained (possibly around 5–15), since for each

sample it is necessary to store a parameter vector of size 𝐷. However, the

sampling procedure still takes over 20 minutes to compute 10 samples.

As such, the time required to compute the samples may be a significant

factor in the overall time required to compute the Laplace approximation.

In particular, for models with a very large number of parameters, the time

required to compute the samples may be prohibitive when compared

when the near-instant time required to sample from the diagonal Laplace

approximation. Even if the sampling time scales sublinearly with the

number of parameters, it would still prevent the application in Laplace

methods that require the Laplace approximation to be computed at

each iteration from being used in practice. However, this sampling time

constraint is also significant for MCMC methods, which are the most

common method for sampling from the posterior distribution of a BNN.
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Figure 6.1: Laplace predictive posterior

(with a confidence interval given by one

standard deviation) for a multilayer per-

ceptron modelling 𝑓 (𝑥) = sin(5𝑥 + 1)
with parameters trained on the marginal

likelihood for a fixed prior precision

𝛼 = 70 (top) and 𝛼 = 1 (bottom). We com-

pute the marginal using our approximate

lower bound and sample from the pos-

terior using our approximate sampling

scheme. The choice of prior precision has

a large effect on the posterior uncertainty,

but, when it is chosen appropriately, our

approximate methods are able to learn

a reasonable predictive distribution (i.e.,

more uncertainty in the regions with no

data) with a similar mean prediction to

the MSE-optimised network.
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In Chapter 5 we tested whether the approximate sampling scheme is

able to produce correct posterior samples on an arbitrary network. In

this chapter, we use our custom bound on the marginal likelihood to

train a Bayesian neural network on the marginal via online Laplace. We

then use our approximate sampling scheme to sample from the posterior

and propagate the samples through the network to produce a predictive

distribution. In this way, we test the entire Bayesian neural network

pipeline, from training to inference.

6.1 The Sine Function

We first use a simple sine function as a toy example to demonstrate the

Bayesian neural network pipeline for regression. First, we must train the

network on the marginal likelihood to demonstrate that the model can

learn a good posterior distribution. We then sample from the posterior

and visualise the posterior predictive samples to showcase the quality of

the predictive distribution.

In Figure 6.1 we show the posterior predictive distribution for a fully

connected neural network modelling a sine curve 𝑓 (𝑥) = sin(5𝑥 + 1) and

compare it to a neural network trained on the MSE loss, i.e., maximum

likelihood for regression. We vary the prior precision 𝛼 to show how

the posterior predictive distribution changes. We have the same prior

precision for all weights and biases, with values 𝛼 = 70 for the top figure

and 𝛼 = 1 for the bottom figure. Figure 3 in the appendix shows the

posterior predictive samples for this experiment.

We can see from Figure 6.1 that for 𝛼 = 70 the posterior predictive

distribution has a low uncertainty in the regions with data, but a high

uncertainty in the regions without data. Furthermore, for this value of 𝛼
the mean of the posterior predictive distribution is relatively close to the

mean of the MSE-optimised network.

For a very low prior precision 𝛼 = 1, the posterior predictive distribution

has a high uncertainty throughout the whole function domain. This is

because the prior uncertainty is very high, so the posterior uncertainty

is also high. Furthermore, because of the noise in the posterior samples,

the mean of the posterior predictive distribution is not close to that of

the MSE-optimised network.

We can thus see that maximising the marginal likelihood is able to learn

a reasonable predictive distribution (i.e., more uncertainty in the regions

with no data) with a similar mean prediction to the MSE-optimised

network, when the prior precision is chosen appropriately. However,

if the prior precision is too low, the posterior predictive distribution

will have an extremely high uncertainty and the mean of the posterior

predictive distribution will not be close to that of the MSE-optimised

network. In these experiments, we have chosen the prior precision to be
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Figure 6.2: Loss curves (top) from train-

ing model parameters and prior preci-

sion with initialisation 𝛼 = 70 (bottom)

on the negative log-marginal likelihood

loss − log 𝑝(𝒚)with a 10 epoch warmup

period of training on MSE loss. Loss

curves show the individual terms that

make up the negative log-marginal like-

lihood loss, as per Equation 6.1. Negative

log-marginal likelihood (in green) and

negative log-likelihood (in orange) are

both strongly smoothed by a moving

average. All four terms can be seen to

decrease during training, with the nega-

tive log-likelihood term dominating the

decrease. We see that the prior precision

𝛼 decreases linearly during training.

fixed, but in practice, we would choose the prior precision by maximising

the marginal likelihood or by cross-validation.

Figure 6.2 show the loss curves from training the model parameters and

prior precision with initialisation 𝛼 = 70 on the negative log-marginal

likelihood loss − log 𝑝(𝒚) for our sine function. First, we train the model

parameters on the MSE loss for 10 epochs, and then start training on

the marginal. As per Equation 3.5, the Laplace-approximate negative

log-marginal likelihood loss during training can be decomposed as

− log 𝑝(𝒚) la≈ − log 𝑝(𝒚 | 𝜽) − log 𝑝(𝜽) + 1

2

log det𝚲 + const. (6.1)

These terms are shown in Figure 6.2 (top), where the negative log-

likelihood − log 𝑝(𝒚 | 𝜽) and negative log-marginal − log 𝑝(𝒚) terms are

both strongly smoothed by a moving average. We can see that all three

terms (and therefore also the negative log-marginal loss itself) decrease

during training. The negative log-likelihood term dominates the overall

decrease in the negative log-marginal. Since we are optimising the prior

precision hyperparameter 𝛼 with the marginal likelihood, we also plot

its variation throughout training in Figure 6.2 (bottom). We see that 𝛼
decreases linearly during training. In practice, if we keep training, we

find that 𝛼 reaches a minimum value below 1. As we showed in Figure 6.1,

this is a poor prior precision, since it leads to an unreasonably high

posterior predictive uncertainty. However, training the hyperparameters

on the marginal likelihood is a sensitive procedure, and so we have not

yet managed to successfully optimise the prior precision. Because of this,

we choose a fixed prior precision in our other experiments.

In Figure 6.3 we show the chi-squared sample plot for the posterior

samples on this sine regression task to demonstrate that the posterior

samples are multivariate normal with the correct covariance, as we

explain in Section 4.4. We choose a low value for the prior precision of

𝛼 = 1 to demonstrate that our sampling works even when the condition

number of the posterior precision is high. Figure 6.3 shows that the

sample square Mahalanobis distances for these experiments appear chi-

squared distributed, so the samples themselves are multivariate normal

with the Laplace posterior precision. We deliberately choose an extremely

large number of posterior samples (1000) to demonstrate the accuracy

of the posterior samples. However, it would not be practical to compute

this many posterior samples for larger problems, since we would have to

either store them all in memory or compute them in batches.

Figure 6.3: Chi-squared sample plot for

visualising normality of 1000 posterior

samples from the full Laplace approxima-

tion for a fully connected neural network

modelling 𝑓 (𝑥) = sin(5𝑥 + 1), using CIQ.

Since the sample square Mahalanobis dis-

tances appear chi-squared distributed,

the samples themselves are multivariate

normal with the correct (known) covari-

ance.

20000 20500 21000
Sample Mahalanobis distances

Sample distances

χ2 PDF

20000 20500 21000

Theoretical χ2 quantiles

20000

20200

20400

20600

20800

21000

S
am

pl
e

qu
an

til
es



6.2 MNIST 41

6.2 MNIST

We now attempt to use our approximate sampling method on a more

realistic problem, namely, the classification of handwritten digits from the

MNIST dataset. To demonstrate that our approximate sampling method

can be used on a more complex network, we train a convolutional neural

network on MNIST to compute the Laplace approximation. Currently,

the inclusion of convolutions in the network causes a major slowdown in

our approximate log-marginal training procedure, so we maximise the

posterior during training (i.e., performing post-hoc Laplace) instead of

the marginal likelihood. Because of this, these experiments have been

performed with a fixed posterior precision 𝛼 which may not be the best

choice for the posterior precision.

Unfortunately, evaluating the quality of the posterior predictive distri-

bution for MNIST is not as straightforward as for the sine curve. The

reason for this is that we cannot easily visually determine the appropriate

magnitude of the uncertainty in the posterior predictive distribution

for MNIST (since the output is a 10-dimensional vector). We instead

only evaluate the quality of the posterior distribution by comparing the

posterior samples to the theoretical posterior distribution, as we did for

the sine function in Figure 6.3. For the sine function, we sampled 1000

posterior samples. Since, in practice, we would not be able to store this

many posterior samples for large-scale problems, we instead sample 200

parameter vectors from the posterior for MNIST, to demonstrate what

these plots look like for a more realistic number of samples. In reality, for

large-scale problems, we would not be able to store even 200 posterior

samples, but between 5 and 20. We can see these results with 𝛼 = 0.1 in

Figure 6.4.

Figure 6.4 shows that sampling succeeds for values of 𝛼 as low as 0.1.

This value of the prior precision is much lower than the value of 𝛼 we

would likely use in practice. Additionally, as we noted in Subsection 2.3.4,

since 𝛼 is the lowest eigenvalue of the posterior precision, the condition

number is inversely proportional to 𝛼. Because of this, by sampling

with a low value of 𝛼, we are sampling from the most ill-conditioned

posterior precision we can expect to encounter. As such, this experiment

allows us to conclude that our approximate sampling method would

successfully be able to sample from the posterior distribution for a wide

range of values of 𝛼 on MNIST without being too ill-conditioned for our

method.
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Figure 6.4: Chi-squared sample plot for

visualising normality of 200 posterior

samples from the full Laplace approxima-

tion for a convolutional neural network

trained on MNIST with prior precision

𝛼 = 0.1, using CIQ. Though the sam-

ple square Mahalanobis distances do not

appear exactly chi-squared distributed,

this is because of the relatively low sam-

ple size used to compute the empirical

histogram and quantiles. Thus, the plots

themselves strongly suggest that the sam-

ples are multivariate normal with the

correct (known) covariance.
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6.3 Discussion

The choice of prior precision 𝛼 is non-trivial. Furthermore, since the

prior precision is the lowest eigenvalue of the posterior precision matrix,

we must choose 𝛼 to be large enough to ensure that the posterior preci-

sion matrix is positive definite (i.e., the prior precision must counteract

small numerical issues which may lead to some negative eigenvalues).

Additionally, the condition number of the posterior precision matrix

is proportional to 𝛼−1
, so 𝛼 should be large enough to ensure that the

posterior precision matrix is well-conditioned. While we can “choose”

𝛼 to be a value large enough to reduce conditioning issues, this some-

what invalidates the Bayesian interpretation of the prior, which should

theoretically be chosen based on prior knowledge of the problem, can

also be learned from the data. Choosing the prior in order to reduce

ill-conditioning of our posterior precision means we sacrifice some of

the benefits of the prior. As such, we would like to learn 𝛼 from the data

by maximising the marginal likelihood. Current issues with training

prevent us from reliably learning 𝛼 from the data across models of

different sizes.
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In this project, we aimed to develop a scalable full Laplace approximation

for Bayesian neural networks. In doing so, we developed a novel method

for approximately sampling from the full Laplace posterior and methods

for preconditioning the Hessian of the negative log-posterior, which

involved attempting to better understand the spectrum of the generalised

Gauss-Newton Laplace posterior precision. To test the quality of our sam-

pling procedure, we showed how to evaluate the quality of the samples

it produces while only accessing the samples themselves and the desired

posterior precision, enabling us to choose a suitable preconditioner for it.

This evaluation method showed that, with an appropriate preconditioner,

we can reliably produce samples which are Gaussian-distributed with

the correct mean and covariance, as desired. As such, we have shown

that our approximate sampling method is a valid (albeit slow) method

for sampling from the full Laplace posterior.

We also developed a novel method for training the full Laplace approx-

imation by maximising the Laplace-approximate marginal likelihood

of the data. To compute this evidence term, we developed a method

for computing an upper bound on the log-determinant of the Laplace

posterior precision without storing the posterior precision itself. This

method allows us to compute a differentiable log-marginal likelihood

bound, which we can train with standard gradient descent optimisation

methods. We showed that this method is a valid method for training

the full Laplace approximation, and that it can be used to train the full

Laplace approximation on a convolutional neural network. However,

we also found that the marginal training procedure to optimise the

hyperparameters of the full Laplace approximation is not yet feasible,

since the hyperparameters converge to unreasonable values.

Finally, we showed that it is possible to perform the full Laplace ap-

proximation with marginal likelihood training, and sample from its

posterior. We demonstrated on a simple sine wave regression problem

and an MNIST classification problem that our method can be used to

train the full Laplace approximation and yield predictive performance

which rivals deterministic training. However, we found that the sampling

procedure is too slow to sample outside of a post-hoc setting, and may

become a significant bottleneck for inference even under post-hoc Laplace

on large-scale problems.

Overall, while we have developed novel methods for training and infer-

ence in the full Laplace approximation, we have yet to demonstrate its

improved performance over the diagonal Laplace approximation nor its

practical application to large-scale problems.



44 7 Conclusion

7.2 Outlook and Future Developments

As mentioned in the previous section, we have not yet demonstrated the

practicality of our method for full Laplace approximation, particularly

for large-scale problems. Hyperparameter selection typically requires

performing a grid search over a range of hyperparameters, which is com-

putationally expensive. As such, the practicality of our method depends

on the ability to perform marginal training to optimise hyperparameters

via backpropagation. Additionally, marginal training is prohibitively

slow for training convolutions, and we have not yet found a way to speed

it up. Furthermore, estimation of the rank of the posterior precision is

important to guarantee the closeness of the upper bound on the log-

determinant term in the marginal, and this is still an open problem. This

is closely related to the fact that we do not have a solid understanding of

how much the eigenvectors of the posterior precision matrix vary across

different observations nor what affects the shape of the spectrum of this

Hessian. This point is also related to the structure of the Hessian in the

Laplace approximation more generally. As such, there is still much work

to be done to understand the methods we have developed and to improve

them.

Since we have not yet been able to train hyperparameters on the log-

marginal likelihood, we have not yet been able to perform the full Laplace

pipeline, which includes training the model parameters and hyperpa-

rameters and sampling from the posterior. Because of this, we have not

yet run experiments which attempt to demonstrate that the full Laplace

approximation shows improved predictive performance or uncertainty

calibration when compared to the diagonal or Kronecker-factored Laplace

approximations. Furthermore, the full Laplace approximation should be

compared to other methods for Bayesian inference, such as variational

approximations, deep ensembles, Monte Carlo dropout, and Markov

chain Monte Carlo—both in terms of performance and runtime.

Furthermore, the feasibility of the full Laplace approximation must be

demonstrated on a large-scale problem. It is not clear how our method for

the full Laplace approximation will scale with the number of parameters,

data points, and model outputs. This concerns not only the actual

predictive performance and uncertainty estimation of the method, but

also the post-hoc inference time for the approximate posterior. As such,

important experiments must be performed to determine the scalability

of the full Laplace approximation. This includes experiments on a large-

scale problem, such as a large-scale image classification problem on a

dataset with hundreds of thousands to millions of rows, with significantly

higher resolution than the MNIST dataset, and more than 10 classes, such

as in the case of zero-shot learning. These experiments would thus also

require models with many parameters, such as a ResNet.
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Appendix





Algorithms

Algorithm 3: Multi-Shift Minimum Residual (msMINRES)

Input :𝑲 ≻ 0, 𝒃, 𝑷 ≻ 0, 𝑡1 , . . . , 𝑡𝑄 , 𝐽 > 0

Output : 𝒄1 = (𝑲 + 𝑡1)−1𝒃, . . . , 𝒄𝑄 = (𝑲 + 𝑡𝑄)−1𝒃
∥𝒃∥

2
← (𝒃 · 𝒃)1/2;

𝒃← 𝒃/∥𝒃∥
2
;

𝒑← 𝑲𝒃;

𝒛−1 ← 0;

𝒛0 ← 𝒃;

𝒒0 ← 𝑷𝒛0;

𝛽0 ← (𝒛0 · 𝒒0);
for 𝑞 ← 1 to 𝑄 do

𝒄
(𝑞)
0
← 0;

𝒅
(𝑞)
0
, 𝒅
(𝑞)
−1
← 0;

cos

(𝑞)
0
, cos

(𝑞)
−1
← 1;

sin

(𝑞)
0
, sin

(𝑞)
−1
← 0;

𝜑
(𝑞)
0
← 𝛽0;

for 𝑗 ← 1 to 𝐽 do
𝒑← 𝑲𝒒 𝑗−1;

𝛼 𝑗 ← 𝒑 · 𝒒 𝑗−1;

𝒛 𝑗 ← 𝒑 − 𝛼 𝑗𝒛 𝑗−1 − 𝛽 𝑗−1𝒛 𝑗−2;

𝒒 𝑗 ← 𝑷𝒛 𝑗 ;
𝛽 𝑗 ← (𝒛 𝑗𝒒 𝑗)1/2;

𝒛 𝑗 ← 𝒛 𝑗/𝛽 𝑗 ;
𝒒 𝑗 ← 𝒒 𝑗/𝛽 𝑗 ;
for 𝑞 ← 1 to 𝑄 do

𝜀
(𝑞)
𝑗
← sin

(𝑞)
𝑗−2

𝛽 𝑗−1;

𝜁
(𝑞)
𝑗
← cos

(𝑞)
𝑗−2

𝛽 𝑗−1;

𝛼
(𝑞)
𝑗
← 𝛼 𝑗 + 𝑡𝑞 ;

𝜂
(𝑞)
𝑗
← cos

(𝑞)
𝑗−1

𝛼
(𝑞)
𝑗
− sin

(𝑞)
𝑗−1

𝜁
(𝑞)
𝑗

;

𝜁
(𝑞)
𝑗
← cos

(𝑞)
𝑗−1

𝜁
(𝑞)
𝑗
+ sin

(𝑞)
𝑗−1

𝛼
(𝑞)
𝑗

;

𝑟
(𝑞)
𝑗
← (𝜂(𝑞)2

𝑗
+ 𝛽2

𝑗
)1/2;

cos

(𝑞)
𝑗
← 𝜂

(𝑞)
𝑗
/𝑟(𝑞)
𝑗

;

sin

(𝑞)
𝑗
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(𝑞)
𝑗
/𝑟(𝑞)
𝑗

;

𝜂
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𝑗
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(𝑞)
𝑗
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(𝑞)
𝑗
+ sin
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;

𝒅
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;

𝒄
(𝑞)
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(𝑞)
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+ Δ𝒄(𝑞)

𝑗
;

for 𝑞 ← 1 to 𝑄 do
𝒄𝑞 ← 𝒄

(𝑞)
𝐽
∥𝒃∥

2
;





Additional Results

Table 1: Comparison of the wall-clock time for Hessian-vector, GGN-vector, and manual matrix-vector products, as well as the equivalent

inverse-vector products, on a toy problem. Time measured in milliseconds, measured on an A100 GPU across 5 runs that are reported as

a mean and standard deviation. Implicit inverse performed via conjugate gradient for HVP and GVP. We highlight in bold the extreme

slowdown of computing the manual Hessian-vector product for a 1 M-dimensional problem. We can see that manual computations fail

above small problems, while the implicit GVP and HVP functions and their inverses scale well. We also see that the GVP is slightly faster

than the HVP, both both are significantly faster than the manual Hessian-vector product.

HVP GVP Manual HVP Inverse GVP Inverse Manual Inverse

𝐷 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

10 91.2 3.6 35.7 1.9 105.6 5.2 277.8 7.9 178.6 9.0 1703.6 646.7

100 91.6 2.7 36.5 2.3 111.6 2.1 288.3 8.7 200.8 26.9 1732.7 672.1

1 k 89.5 3.5 36.8 3.3 119.9 2.3 308.6 7.5 256.5 34.3 1767.3 653.4

10 k 91.4 3.8 36.7 3.4 118.0 2.4 312.4 11.1 228.9 38.1 2165.0 720.8

100 k 89.7 1.9 36.7 3.3 179.9 13.5 325.8 5.3 206.2 8.5 — —

1 M 91.3 1.5 38.5 3.0 2961.8 1060.9 351.7 6.6 252.0 33.0 — —

10 M 101.2 5.1 43.8 2.5 — — 343.4 13.5 216.5 12.6 — —

100 M 100.0 2.4 45.5 2.1 — — 372.3 13.9 271.5 34.4 — —

1 B 105.9 4.8 52.4 7.5 — — — — — — — —
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(a) Top: comparison of the performance

for manual matrix-vector, Hessian-vector,

and GGN-vector products. Bottom: com-

parison of the performance of inverse-

vector products for the same methods.

Implicit inverse performed via conjugate

gradient for HVP and GVP. We can see

that the explicit Hessian-vector product

fails for problems with more than 10 000

dimensions and that the GVP is faster

than the HVP.
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(b) Comparison of the speedup from com-

putation of the Hessian-vector product

(HVP) versus the GGN-vector product

(GVP) (top) and inverse HVP versus in-

verse GVP using the conjugate gradient

method (bottom). Speedup is calculated

as the ratio of the wall-clock time of the

HVP to the GVP. We can see that the two

methods have the same time complexity

(up to a linear factor).

Figure 1: Performance comparison of different Hessian-vector products on CPU.
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(a) 𝑄 = 1
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(b) 𝑄 = 2
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(c) 𝑄 = 3
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(d) 𝑄 = 4

15200 15400 15600 15800
Sample Mahalanobis distances

Sample distances

χ2 PDF

15200 15400 15600 15800

Theoretical χ2 quantiles

15200

15400

15600

15800

S
am

pl
e

qu
an

til
es

(e) 𝑄 = 5
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(f) 𝑄 = 10
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(g) 𝑄 = 20

Figure 2: Chi-squared sample plots for visualising normality of 200 posterior samples from the full Laplace approximation on MNIST

for a varying number of quadrature points 𝑄. Samples appear correctly distributed for 𝑄 ≥ 5, incorrectly distributed for 𝑄 < 4, and

borderline for 𝑄 = 4.
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Figure 3: Laplace posterior predictive samples for a sine curve for different prior precisions 𝛼.


